Communicating emotions and mental states to robots in a real time parallel framework using Laban movement analysis

Tino Lourens, Roos van Berkel, Emilia Barakova*
Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands

ABSTRACT
This paper presents a parallel real time framework for emotions and mental states extraction and recognition from video fragments of human movements. In the experimental setup human hands are tracked by evaluation of moving skin-colored objects. The tracking analysis demonstrates that acceleration and frequency characteristics of the traced objects are relevant for classification of the emotional expressiveness of human movements. The outcomes of the emotional and mental states recognition are cross-validated with the analysis of two independent certified movement analysts (CMA’s) who use the Laban movement analysis (LMA) method. We argue that LMA based computer analysis can serve as a common language for expressing and interpreting emotional movements between robots and humans, and in that way it resembles the common coding principle between action and perception by humans and primates that is embodied by the mirror neuron system. The solution is part of a larger project on interaction between a human and a humanoid robot with the aim of training social behavioral skills to autistic children with robots acting in a natural environment.

1. Introduction
Sociable humanoid robots pose a dramatic and intriguing shift in the way one thinks about control of autonomous robots. The introduction of robots that have to demonstrate different degrees of autonomy imposed different requirements than industrial robots that have been pre-programmed to work in a fully controlled environment. Biologically inspired and cognitive approaches to robotics have been successfully applied to achieve a degree of autonomy that is determined on the level of an individual organism. By sociable robots it is necessary to go beyond sensory-motor interaction by also taking into account the interplay between constitutive and interactive aspects of autonomy. This implies that sensory-motor interaction has to be enriched with intentional, reward, and emotional features [1,2].

Most of the existing sociable robots are mainly used in a tele-operated or “wizard of Oz” manner [3,4], although there is a number of exciting developments in robots that interact autonomously in a meaningful for the human way [5–7] or use brain-like mechanisms or neural mechanisms [8–10].

Brain inspired robots have been used for investigating animal locomotion and motor control, [11–14,9], to learn to avoid obstacles [15,16], produce accurate vision functions [17–19], generate adaptive arm movements [17,20,13,9], perform (rat-like) learning and memory tasks [21,14,22–24], or to emulate the human or rodent reward and value systems [25,26].

Many of these functionalities are building blocks for social behavior. Social neuro-robots have been based mainly on the theories of the mirror neuron system. Mirror neurons are visuo-motor neurons that fire both when an action is performed, and when a similar or identical action is passively observed [27]. Using this notion of mirror neurons, it has been shown that observing complex movements such as reaching and locomotion [7,28,29,9] as well as postures, non-goal directed movements, and facial expressions, interacts with the preparation of similar actions [30], due to common motor encoding of the observed and the performed actions. Many studies identify that the mirror neuron system for motor imitation is comprised of three main cortical areas: the premotor cortex (F5), the inferior parietal lobule (PF), and the superior temporal sulcus (STS). It creates an affordance to first implement goal-oriented tasks, such as grasping. This system has further evolved to dynamically represent the sensory and the motor correlates of an action. This way perceiving and performing an action exploits the same representation i.e. the action of the conspecifics is represented in the acting agent. Therefore the mirror neuron system can facilitate imitation of action, as one of the earliest forms of reciprocal interaction observed between infant and caregiver [31].

Motor imitation is fundamental for an infant’s emerging ability to detect the correspondence between self and others [31]. The early opportunity for an infant to detect similarities with others
leads to later understanding of other’s intentional behavior and the development of theory of mind. A more general system for social interaction facilitates the emotional aspects of the imitative or other reciprocal behaviors. The studies of human emotion that are related to observable human behavior in terms of postures and movement, such as [32], place the amygdala at the core of a network of emotional brain structures. The amygdala and STS are directly connected and involved in recognition of emotional body language. It decodes the affective relevance of sensory inputs and initiates adaptive behaviors via its connections to the motor mirror system [33].

To model the cascade of brain areas or mechanisms that relate to imitation of motor and emotional actions is a challenging task. Instead, we model motor imitation and other reciprocal behaviors on a functional level, by describing the movement in the framework of Laban movement analysis. LMA is a formal ‘language’ for movement description [34,35] and emphasizes how internal states, feelings and intentions govern the patterning of movement throughout the whole body. Because of that LMA makes it possible to implement the common coding principle (i.e. the functional principle of the mirror neuron system) on a behavioral level. Similar to the common coding/mirroring paradigm LMA is useful to describe the interaction in the physical world, through using the same description for expressing and interpreting of emotional movements [36].

LMA captures both the kinematic as well as the non-kinematic features of movement. Non-kinematic features of movements are the qualitative aspects of movement, characterized by changes in its intensity, shape, force, flow and rhythm. These changes are more expressive than changes in the spatial-temporal body relations. LMA detects the changes in several body parts and axes.

Using robots for social training and interaction is concordant with the interest for nonverbal social communication, expressed via movement, postures and facial expressions. The robots are required to produce and perceive nonverbal behavior in real time, and in parallel (i.e. 2 or more simultaneous movement, mimic or postural behaviors). In this paper we will focus on perceiving and interpreting nonverbal behavior for the purpose of modeling reciprocal social behavior on a robot. The interpretation of the behavior also through LMA is rooted in the dynamic and qualitative characteristics of the movement in real time, and it can be concluded from observation of parallel movement behaviors.

Real time parallelism on a PC has been strongly facilitated by recent developments of graphical processing units (GPUs), not only have these GPUs become fast but they also can be used as general processing units [37].

We use a standardized humanoid robot NAO (Aldebran) and the GPU based parallel processing for more realistic behavioral applications and have adopted the approach of functional brain modeling [38]. To realize and integrate these functional models we use graphical software environment TWIPE [39], as suggested in [40,18,41,19].

More specifically we are interested in scenarios involving multiple simultaneous actions performed by different body parts of a human or a robot. We assume realistic imitation scenarios, i.e., scenarios where a human freely behaves and a robot tracks its actions with the intent to act upon the meaningful ones, for instance by imitation [42] or by encoding and recollecting episodes of memories [43].

The focus in this paper will be to define the technical aspects of this architecture, and show detecting and tracking of multiple behavioral trajectories of different body parts with a further aim to detect incongruent, atypical, or emotional behavior. We demonstrate the results for emotional and neutral hand-waving behavior and guitar playing and demonstrate that both visible skin colored body parts can be tracked in real time. The paper also describes Laban movement analysis (LMA) and elaborates on a method for detection and recognition of emotional movements using this LMA by evaluating hand-waving and guitar playing experiments.

The paper is organized as follows: Section 2 describes the experimental setup and gives the implementation of marking a hand in an image using skin color. For the sequence of images such region is marked to construct a stream that is used to analyze hand-waving behavior. This section provides some preliminary experimental results. Section 3 provides an initial setup how these data streams can be used to extract social behavior for interaction with a robot. Sections 4 and 5 describe Laban movement analysis and the hand-waving experiment from this perspective. Section 6 elaborates on human emotion recognition while playing guitar and describes analogies with the hand-waving experiment. The paper finishes with a discussion and future research.

2. Experimental setup

We have been conducting hand-waving experiments within scenarios where different emotions and mental states has been enacted. Fig. 3 depicts four (happy, angry, sad, and polite) different emotional waving patterns. A camera records images that are processed using a combination of skin color and motion detection, with the aim of tracking a single area. This area is associated with the waving movement. A device or robot should be able to extract a simple motion pattern and interpret the intend, the emotion, or the mental state conveyed by this movement behavior, imitate this movement pattern or eventually adjust its own behavior. The aim of the overall project is to teach or to influence the behavior of the human in order to improve his or her social skills, that is necessary, for instance, for people with autism.

The implementation of detection and tracking a moving hand is given in Fig. 1. It is used for both the hand-waving and guitar playing experiments and comprises the following steps:

1. acquiring data from a camera or reading a stored image sequence.
2. binarizing an image by marking a pixel either as skin color or other color and in parallel binarizing an image by marking pixels either as observed motion or as static element.
3. marking skin and motion regions by a pyramid decomposition.
4. selection of these regions that are both skin and motion region.
5. averaging skin-in-motion regions to a single region.
6. tracking an averaged skin-in-motion region.
7. visualization of regions in an image.
8. visualization of a waving hand.
9. classification of waving profiles.

The theoretical background and the computational details behind the implemented signal processing is described in more detail in the following subsections.

2.1. Skin color detection

An image is defined as a two-dimensional matrix where a pixel at position \((x, y) \) has an intensity \(I(x, y) = (r, g, b) \), where \(r, g, \) and \(b \in [0, \ldots, 255] \) are the red, green, and blue components. Segmentation using skin color can be made independent of differences in race when processing image pixels in \(Y = Cr - Cb \) color space [44]. The following \((r, g, b) \) to \((Y, Cr, Cb) \) conversion is used

\[
Y = 0.2989r + 0.5866g + 0.1145b
\]

\[
Cr = 0.7132(r - Y)
\]

\[
Cb = 0.5647(b - Y),
\]

\[1\text{ A single GPU card is able to process up to 5 tera (10^{12}) floating point operations per second (TFLOPS).}\]
well [48, 49]. Receptive fields of a cat’s primary visual cortex area V1 and V2, that show striking similarities with these Gabor kernels, have been found in the 1950’s by neuroscientists and Nobel laureates Hubel and Wiesel [50, 51]. It is plausible that a similar activity flow map might be expected in the middle temporal are MT, also known as primary visual cortex area V5 [45].

From \((V_x, V_y)\) the L-2 norm (top right “DoubleOperand” icon of Fig. 1) is taken and thresholded at 5 to obtain a binary “motion classified” image.

2.3. Rectangular region marking

The next stage is marking a cluster of “skin tone classified” or “motion classified” pixels by a rectangular window. This is performed by decomposing the image into a pyramid, where every pixel in the next level of the pyramid is computed as follows:

\[
I_{i+1}(x, y) = \frac{1}{4 \sum_{x' \in B} \sum_{y' \in B} I_i(2x + x', 2y + y')
\]

where \((x, y)\) is the position in image \(I_i\), \(i\) denotes the level in the pyramid. Base level 0 contains the original image \(I_0\). The construction of a pyramid using (4) provides a strongly reduced search space, since if in level \(i+1\) a pixel \(I_{i+1}(x, y)\) is found to belong to the desired region then in level \(i\) of the pyramid a cluster of \(2 \times 2\) pixels \((I_i(2x, 2y), I_i(2x+1, 2y), I_i(2x, 2y+1), I_i(2x+1, 2y+1))\) belong to the same region.

The search for regions of interest starts at the highest level, and decreases until an a priori known minimum level has been reached. It is therefore possible that no regions of interest are found. Taking into consideration that if a pixel is marked as “skin tone” or “motion” it has value 1, and 0 otherwise. We define a pixel to belong to a unique region if \(j\) if it satisfies the following:

\[
R^1_j(x + 1, y + 1) = I_j(x, y) = 1.
\]

Regions \(R^1\) in their initial setting are bound by a single pixel \(I_j(x, y)\), and a region growing algorithm is applied to determine the proper size of the rectangular region. Let us assume that the initial size of the rectangle is \(R^1_j = (x_l, x_u, y_l, y_u)\) and that the possible growing areas are left \((R^1_i = R^1_j - 1, x_l, y_l, y_u)\), right \((R^1_i = R^1_j - 1, x_u, y_u, y_d)\), above \((R^1_i = R^1_j - 1, x_l, y_d, y_u)\), and below \((R^1_i = R^1_j - 1, x_l, y_l, y_d + 1)\) this region. The average value of all four growing areas is taken, where the maximum value determines the direction of growing. The following procedure

\[
A^0_i = \text{avg}(R^1_i), \quad x \in \{l, r, u, d\}
\]

\[
M^0_i = \max_x (A^0_i)
\]

\[
R^0_i = R^0_i \cup R^0_i, \quad \text{if } M^0_i \geq T_{rg}
\]

is repeated until \(M^u_i < T_{rg}\). From experiments \(T_{rg} = 0.67\) provides a rectangle that corresponds roughly to a skin area in the original image and 0.5 gives a sufficiently large motion area, see also Fig. 2.

The method described above is able to find all uniform skin color and motion regions in an image in real time.

2.4. Tracking

Two examples of the waving experiment using color images of \(640 \times 480\) pixels at a speed of 29 frames per second are provided in Fig. 2. Creating a single region in the image rather than multiple regions of interest is accomplished in order to unambiguously track an object of interest. These tracked objects are stored as file,
Fig. 2. Marked regions of interest. Red and green areas denote skin and motion area, respectively. A blue area is the combined moving skin area that has been averaged over all skin areas that are moving. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

see also icon “StreamTrackRegionToFile” of Fig. 1, and processed further.

Fifteen recordings of 20 s have been made where a performer was asked to demonstrate happiness, anger, sadness, or politeness.

Fig. 3. Waving patterns given by acceleration profiles for (a) happiness, (b) anger, (c) sadness, and (d) politeness.

In each plot the acceleration profile has been obtained by taking the second derivative of the central point of the tracked object. Examples for all four different emotional states are depicted in
Fig. 4. Distinct emotion profiles are revealed by average frequency and acceleration.

Fig. 3. From this figure the following can be observed:
1. happy waving provides a regular waving pattern with a relatively high frequency.
2. anger demonstrates bursts with tremendous acceleration.
3. sadness demonstrates a profile of low acceleration, its frequency is relatively low and appears to have a lower frequency compared to the other three emotions.
4. politeness that demonstrates a queen type of waving profile is a regular pattern with a high frequency that is obtained by using minimal energy.

In an average acceleration-frequency plot of the recorded movements four distinctive clusters are formed (Fig. 4). In one of the image sequences the actor was instructed to perform polite waving, but in the sequence she seemed to be happy, indicating that there might be a smooth boundary between these emotional states. The average energy in one of the five bursts in Fig. 3(b) shows an average acceleration score of more than 0.07 and gives an indication of the upper bound of used energy by performing these emotions by the actor.

3. Behavioral primitives

Understanding motion from waving patterns requires a mechanism that is able to learn to interpret and classify these sequences, and ideally able to extract the observations provided in Section 2.4. In the following section we are attempting to classify motion by so-called Laban primitives. Using these primitives we classify the intent and the mental state of the person that perform movement behavioral patterns.

The current method is developed to enable a robot to interact with a human in realistic scenarios. If a robot is able to track in parallel regions of interest, a considerable number of interacting scenarios is possible even without interpreting the meaning of an object. Moreover, using an earlier developed technique [52] the robot recognizes and learns repeating patterns of behavior, which it considers important, and discards occasional movements which most often are not important. For instance, if during waving of the hand a head movement takes place because at this time somebody enters the room, this movement will be ignored. However, if a person that interacts with the robot performs repeatedly a movement with his/her head while waving, this will be learned and eventually included in the imitation behavior of the robot.

4. Laban movement analysis

Rudolf Von Laban, a dance theorist, created a practical method for recording all forms of human motion. While Laban first refers to his notation, as well as to other systems as choreography, for its final form he coined the term kinetography and initially published it as “Schriiftanz” (written dance or script-dance) [53,54], which also appeared as the Schriftanz Magazine form 1928–1931. The Laban notation system [34] became known a Kinetography Laban [55,56] and Labanotation [57].

Bartenieff [35], a student of Laban, applied developmental principles and Laban’s theories to her work with polio patients and dancers, her system is known as Laban/Bartenieff movement analysis or Laban movement studies and comprises:

- Laban movement analysis,
- Anatomy and kinesiology,
- Bartenieff fundamentals (BF), and
- Labanotation.

LMA emphasizes the processes underlying motor actions rather than the resultant motor action. It records how the four movement components ‘Body, Effort, Shape, and Space (BEES)’ are integrated, or not, throughout the observed movements. LMA was used to evaluate fighting behaviors of rats [58], to diagnose autistic patients [59], to explain the differences in sexual behavior in Japanese macaques [60] and to analyze the quality of movement by recovery of stroke patients [61]. We use LMA for description of the kinematic and non-kinematic movements made by human subjects that perform emotional actions. The reliability of the non-kinematic measures in LMA has been validated in previous studies [62,63,60]. In this paper the focus is on effort [64] or dynamics, it is a system for understanding the more subtle characteristics about the way a movement is done with respect to inner intention.

For instance, the difference between punching or reaching for an object is small in terms of body organization, since both rely on extension of the arm. The attention to strength, control, and timing of the movement are different. Effort has four sub-categories, each of which has two opposite polarities:

- Space (direct or indirect). Space effort constitutes a single-focused or multi-focused approach to the environment.
- Weight (light and strong). Weight effort determines how I use the impact of my body weight during a movement, ranging from delicate to more forceful.
- Time (sustained or quick). Time effort reveals a deceleration or acceleration within movement.
- Flow (free or bound). Flow effort is responsible for the continuousness or ongoingness of motions, varying from uncontrolled to more controlled use of flow within movement.

Laban considers movement expressions to be almost always a combination of two or three atoms of movement, i.e. dominant effort factors. A combination of two effort factors constitutes a state and a combination of three effort factors constitutes a drive. States and drives are movement structures, to be considered as maps in which different motion factors are combined. These states are

- Awake = space + time.
- Dream = weight + flow.
- Stable = weight + space.
- Mobile = time + flow.
- Remote = flow + space.
- Rhythm = weight + time

and its distinct drives are

- Action = space + weight + time.
- Vision = time + space + flow.
- Spell = weight + space + flow.
- Passion = time + weight + flow.

2 Kinetography is derived from the Greek words kinesis (movement) and graphein (to write).
Laban described the *effort actions* or *action drive* using the subdivision of time, weight, and space, as provided in Table 1. While, flow, either free or bound, is responsible for the continuousness or ongoingsness of motions. A detailed description of action drive is found in [65].

All effort factors are visualized in an effort graph, as given in Fig. 5. The graph should be evaluated by interpreting four factors each having two polarities, yielding 8 different line segments. The horizontal axis is given by free flow on the left and bound flow on the right. Its vertical axis by light weight on top and strong weight at the bottom, a secondary plane is given by direct space on the horizontal axis and indirect space on the vertical axis. The left and right, non-connected, horizontal lines represent sustained and quick time respectively. In this paper a red segment denotes that the respective effort polarity has been found, while black denotes that it is not. The diagonal line segment is used to connect the secondary ‘space’ plane.

5. Laban analysis of hand-waving experiment

Analysis of videos with a happy waving scenario displays a clear standard use of accelerated movement that travels up along the vertical axis of the body, being a combination of Quick Time and Light Weight. Most emotions that are qualified as positive have an affinity with movement that goes upward in relation to the spine. The first recording reveals a Passion Drive because the Free Flow Effort factor is dominant, meaning the enthusiasm comes out strong and the mover is – taken over – by emotion. During the second and third recording a shift from Free Flow into Indirect Space has been observed. With Indirect Space Effort, the mover uses a spatial awareness that is multi-focused instead of focusing on one point directly. During the second and third recording, movement that is more controlled as well as more connected to the surrounding space has been observed. This shift from Free Flow to Indirect Space means that the Effort Drive, which is a combination of three Effort factors, changes from a Passion Drive into an Action Drive.

Analysis of videos with an angry waving scenario reveals a clear standard use of Strong Weight with a tendency towards Direct Space and Quick Time. In terms of accelerated, less controlled movement (Quick Time and Free Flow), the first movement is similar to recording 1 of the happy movement. The difference between the recording of the happy movement expression and the angry movement expression is the Weight Effort factor. The negative impulse of the emotion causes an accelerating impulse that travels downward in relation to the spine. The Effort factors that usually accompany negative emotions are shown quite clearly in the Effort graph. One can see that the emphasis in the movement lies on the use of Strong Weight, Direct Space and Quick Time. The Flow Effort factor diminishes in the second and fourth example, relating the movement to an Action Drive instead of the Passion Drive. The third recording does not show acceleration or deceleration, meaning the Time Effort factor is not sufficiently dominant to maintain the Action Drive. In this case the Time Effort is replaced by use of Bound Flow Effort as the movement is more controlled.

Video analysis of sad waving scenarios show a clear standard use of Sustained Time Effort and a frequent use of Bound Flow. The movement recordings contain Passion Drives and Vision Drives. The difference between the Passion Drive and the Vision Drive is that the Passion Drive is less connected to the surrounding space and the horizontal axis of the mover, whereas the Vision Drive is less connected to the sense of gravity and the vertical axis of the mover. Taking into account that this movement example of sadness does not use a strong impulse, the combination of Sustained Time and Bound Flow seems logical. The movement slows down within Sustained Time Effort and due to the control that is related to the Bound Flow Effort, the beginning of the movement is relatively unaccented. One might be surprised that this movement example is related to Light Weight instead of Strong Weight as sadness fits within the realm of negative emotions. In this case the mover approaches sadness in a very gentle, melancholic way. These characteristics establish Light Weight Effort as these movement expressions are more delicate than brusque.

Video analysis of polite waving behavior displays a clear standard use of the Light Weight Effort factor and the Direct Space Effort factor. As noted with the previous movement example, the mover has a soft, delicate approach to politeness and therefore the use of Light Weight Effort is dominant. The movements are strongly connected to specific points in the surrounding environment, establishing a clear use of Direct Space Effort. The first two movement examples do not contain specific Time Effort factors, giving the movement a very stable character. During the third movement example, the mover uses Time Effort with slight acceleration, creating a shift from the stable Spell Drive into a more impulsive Action Drive. In this case the consequence of using Time Effort means the initial control within the movement is diminished, completing the sense of Action Drive.

The four distinct emotion profiles illustrated in Fig. 4 are described by an energy measure by means of the average absolute acceleration, and clearly correlates with the weight effort, as illustrated in Table 2. While the frequency of hand-waving correlates with time effort and space effort. The Laban movement analysis of the waving patterns has been performed by two different certified movement analysts. Their main difference was

Table 1

<table>
<thead>
<tr>
<th>Action drives, given by combinations of effort factors time, weight, and space.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
</tr>
<tr>
<td>Punch</td>
</tr>
<tr>
<td>Dab</td>
</tr>
<tr>
<td>Slash</td>
</tr>
<tr>
<td>Flick</td>
</tr>
<tr>
<td>Press</td>
</tr>
<tr>
<td>Glide</td>
</tr>
<tr>
<td>Wring</td>
</tr>
<tr>
<td>Float</td>
</tr>
</tbody>
</table>

The numbering of these videos is given in Table 2.
in the interpretation of weight for the four happy patterns. The first considered happiness in combination with strong effort still light weight, while the latter considered the substantial effort as strong weight. When comparing the this conclusion with the emotion profiles of Fig. 4 we conclude that this interpretation is a slight shift in the average amplitude of acceleration.

In the evaluation of video files that expresses the mental state of politeness was analyzed differently by both analysts. While the first analyst defined it as a drive, i.e. containing 3 active atoms of movement, which is typical for emotions, the second analyst defined it as a state, since she could identify only two active atoms. The evaluation of video file denoted in Table 2 with “Polite” 13, 14, 15 the second analyst stated that patterns 13 and 14 are in indirect space, and pattern 15 shows direct space, which explains the higher frequency of the acceleration pattern compared to the other two Polite waving patterns.

6. Emotion retrieval from guitar playing

Human emotions are, apart from other ways, expressed by our way of moving. Playing a guitar, or making music for that matter, is a way of expressing your emotions. The way how these emotions are expressed and perceived could be different for each guitar player, but it is likely that there are some general characteristics of emotions into the movement of guitar players.

The experimental setup is similar to the hand-waving experiment, see also Fig. 1, i.e., a camera has been used to record images at a resolution of 320×240 pixels at 30 frames per second. These images have been first thresholded at a gray value level of $T = 64$ to avoid skin color detection on the dark brown guitar:

$$O(x, y) = \begin{cases} 1, & \text{if } \sum_{(r, g, b)} I_r(x, y) < 3T \\ I(x, y), & \text{otherwise}, \end{cases}$$

where O and I denote the color output and input image, respectively. Further processing is exactly the same as described in Fig. 1.

All participants were asked to play 3 songs on an electric guitar. One song which they perceived to be happy, one to be sad, and one to be angry. They were completely free in which songs they wanted to play for each emotion. Single images of some of the videos are illustrated in Fig. 6.

Guitar players make repetitive movements with their hands while playing and are therefore suitable to compare with hand-waving. However the frequency component depends on the type of songs that are played and do not necessarily reveal characteristic information about the emotion. The acceleration profiles illustrated in Fig. 7 show that the acceleration profiles in vertical direction look similar in different songs. However, when computing the average amplitude of acceleration there was a difference between sad, happy, and angry, the ratio in energy was $1:1.4:1.7$ for the profiles given in Fig. 7, yielding a similar energy ratio profile compared to hand-waving emotions as given in Fig. 4.

The most striking differences are seen in horizontal direction, and due to the posture the backward swing is the only degree of freedom where substantial higher acceleration of the hand can be observed. The main difference between the emotions is the number of occurrences of such a backward swing. The number of times this happens is 0, 4, and 7 times respectively for sad, happy, and angry, over a period of 25–30 s, as illustrated in Fig. 7.

7. Discussion and future work

In this paper we have shown that a robot or other device with a simple camera is able to detect and track a waving hand in real time by using a combination of skin tone and motion. We have shown that the display in the frequency-amplitude domain of the tracked moving hand of a person who enacts emotional or
mental states provides a clear indication of the expressed emotion. The movements that express emotions performed by a single person are unambiguously clustered and segregated in this domain making the current approach suitable for emotion recognition. The distinctive acceleration patterns for the different emotions are independent from the trajectory of the movement. For instance for an angry movement the performer was enacting an angry mother calling for her child or a person who wanted to push away an annoying fly. Despite of the very different trajectories the acceleration patterns were looking similar and were clustered in the same class. That makes it possible to extract emotional primitives that are implemented in robot movements so the robot can socially interact with a human.

It is obvious that we have barely touched the surface of the overall research that we would like to conduct. The experiments with hand-waving were partially confirmed with guitar experiments, but still the number of tested subjects is not representative in order to conclude that the extracted emotional primitives are valid for most people and cultures. We have some success in expressing emotional behaviors by robots [2] but our aim is to create reciprocal interactive behaviors that appear natural and are not restricted to simple imitation. Questions, such as: Do the simulation of emotional primitives lead to adaptive or predictive behavior? How does the design of simple interaction behavior look like? And how to design interaction, such that it appears natural and distinctive on a humanoid robot? remain to be answered.

It is clear that the observed results for guitar playing are merely an indication what to expect rather than a proof. The experiment conducted involved 5 different players, and each player was asked to play a song with a sad, happy, and angry emotion setting. An extensive user experiment is required to evaluate a single player over a longer period of time. It is a fact that emotions cannot be invoked on command. When the participants were asked to play 3 songs linked with a certain emotion, they were not feeling those emotions at that moment, but they were performing a song which they believe expresses that emotion. To validate whether the emotion is not expressed by the player a feedback mechanism provided for instance by the heart-rate variability measurement might be useful. Furthermore, another aspect that influences the validity of our results is the diversity of the character of the players. For example, an introvert person could express his/her emotions differently then an extrovert person. Therefore it is important to look between the relative difference and define a range of the characteristic of the emotions, rather then absolute patterns of emotions.

An important design aspect of each humanoid robot is how closely human movement can be emulated on it. The emulation is restricted by the understanding the physical limitations of the robots, and the mechanism that cause the movement behavior. Moreover, the emotion is not expressed by an individual body part. We assume that by negative emotions the coordination of movements between different body parts becomes worse. Our parallel architecture makes possible to conduct such experiments and robot emulations.

Acknowledgement

The analysis of CMA Katya Bloom, of the different wavelike sequences is greatly acknowledged.

References

Tino Lourens received an M.S. degree in computer science in 1993 and a Ph.D. degree in 1998, both from the University of Groningen, The Netherlands. He was a researcher at The Netherlands Organization for Applied Scientific Research at The Human Factors Research Institute (TNO HRI) in Soesterberg, The Netherlands (1998–1999), Japan Science and Technology Corporation (JST), ERATO, Kitano Symbiotic Systems Project in Tokyo, Japan (1999–2001), GMD/GMD, Kitakyushu, Japan (2001–2002), Honda Research Institute (HRI) in Wako, Japan (2003–2006), Philips Healthcare in Best, The Netherlands (2006–2008), and is currently affiliated with the Eindhoven University of Technology, The Netherlands. Since 2008 he is the owner and CEO of TIViPE, a company specialized in software solutions. Dr. Lourens has published over 50 papers in refereed journals and conferences and is the author of visual programming environment TIViPE. His research interests include object recognition from real world images, biological models of visual programming, parallel and distributed processing, robotics, brain-like computing, multi-modal integration, memory, learning, and intelligence.

Roos van Berkel is a Certified Movement Analyst CMA. She has studied modern dance in London, and mastered the movement analysis in New York. She is a professional dancer and a coach/lecturer in different Dutch universities and art academies, including the Industrial Design Department of Eindhoven University of Technology. She has a consultancy firm LMAnalysis which is specialized in Laban/Ross/Feldman movement analysis and research.
Emilia Barakova is affiliated with the Department of Industrial Design of the Eindhoven University of Technology (TU/e), The Netherlands, and simultaneously holds a Visiting Researcher position at RIKEN Brain Science Institute in Japan. She has a Masters Degree in Electronics and Automation from Technical University of Sofia (Bulgaria) and a Ph.D. degree in Mathematics and Physics from Groningen University (The Netherlands). Professor Barakova has expertise in computational neuroscience (RIKEN Brain Science Institute, Japan), behavioural robotics (GMD-Japan Research Laboratory, Japan, visiting researcher at AIS Fraunhofer, Germany, collaborations with Honda Research Institute, Japan), social robotics and user-centred design of robots and tools for autistic care (Eindhoven University of Technology, The Netherlands), and neural learning (RIKEN Brain Science Institute, Japan, Groningen University, The Netherlands, Bulgarian Academy of Science). She has organized and chaired several scientific conferences and workshops, including IEEE HIS04, and Measuring Behavior 2010, Social Interaction through physical play 2008. Barakova is an associate editor of the Journal of Integrative Neuroscience (Integrative mechanisms), she has served as a guest editor of the journal Neurocomputing and the journal Personal and Ubiquitous Computing. She has organized many workshops and special sessions in the areas of neurorobotics, integrative mechanisms, social and behavioural robotics. Barakova has been an invited speaker at several symposia and summer schools, and has participated in several robocup competitions. She has developed an integrative approach to robotics that combines computational neuroscience, neural learning methods and user-centred methods that result in bringing robots in everyday life situations.