Rethinking your plotting habits

An introduction to the Grammar of Graphics

Aim

Make plots / visualisations of data:

- reproducible
- more flexible for exploration
- publication-ready (no editing by hand)
- principles apply across different languages: MATLAB, PYTHON, R, JULIA, ...
- and different kinds of data: fMRI, EEG, psychophys, ...

The ideas

A Layered Grammar of Graphics
Hadley Wickham
A grammar of graphics is a tool that enables us to concisely describe the components
A grammar of graphics is a tool that enables us to concisely describe the components
of a graphic. Such a grammar allows us to move beyond named graphics (e.g., the "scat-
 article builds on Wiikinson, Anand, and Grossman (2005), describing extensions and
refinements developed while building an open source implementation of the grammar of graphiss for R , ggop 1 ot 2
The topics in this
The topics in this article include an introduction to the grammar by working through
the process of creating a plot, and discussing the components that we need. The gramthe process of creaing a plot, and discussing the components shat we need. The eram-
mar is then presented formally and compared to wilkinson's srammar, highlighting the
hierarchy of defuutss and the implications of embedding a raphical rammar into mari is then presented formaly and compared to Wikinson's grammar, highighting the
hierarchy of defaults, and the implications of embedding a graphical grammar into a programming language. The power of the grammar is illustrated with a selection of
examples that explore different components and their interactions, in more detail. The examples that explore different components and their interactions, in more detail. The
article concludes by discussing some perceptual issus, and thinking about how we can build on the grammar to learn how to to create graphical "poems."
Supplemenal malerials are avalable onnine.
Key Words: Grammar of graphics: Statistical graphics.

1. INTRODUCTION

What is a graphic? How can we succinctly describe a graphic? And how can we create the graphic that we have described? These are important questions for the field of statistical graphics.
One way to answer these questions is to develop a grammar: "the fundamental principle or rules of an art or science" (OED Online 1989). A good grammar will allow us to gai between seemingly different graphics (Cox 1978). A grammar provides a strong foundatio for understanding a diverse range of graphics. A grammar may also help guide us on wha a well-formed or correct graphic looks like, but there will still be many grammaticall

Hadley Wickham is Assistant Professor of Satisisics, Rice University, Houston, TX 77030 (E-mai
Hadley wicham is
h. wicham@ gmailcom .

- $2010 \begin{aligned} & \text { American Statistical Association, Institute of } \\ & \text { and Inerefuce Foumdation of North }\end{aligned}$
Journal of Compulutiononal and Graphical Statisticics, volume e 19 , Number 1 , Pages 3 -2 2
Journal of Computational and G
Dol: $10.11988 / \operatorname{cicss}^{2} 2009.07098$

Wickham (2010)

The ideas

Wickham (2010)

iruperrotire

https://uk.mathworks.com/products/matlab/plot-gallery.html
imperative

https://uk.mathworks.com/products/matlab/plot-gallery.html
decide on plot type, build plot step by step, ...
-ve: leads to repetitive code / work

declarative

/dr'klaretrv/ 4)
adjective

1. of the nature of or making a declaration. "declarative statements"
2. COMPUTING denoting high-level programming languages which can be used to solve problems without requiring the programmer to specify an exact procedure to be followed.
noun
3. a statement in the form of a declaration.

instead: common framework

geometry aesthetics data

instead: common framework

coordinates

stats
facets
scales
geometry
aesthetics
data

a grammar

instead: eonitionframework

coordinates
stats
facets
scales
geometry
aesthetics
data

an example

Figure 3b

recreating this graphic in R/ggplot2

code:

https://gist.github.com/schluppeck/ 9a54b9b7a37793d8959779629b4cd2fc

data, d

head(d)

	X subject	coherence	absent	present
1	1	1	4	0.035996
0.087079				
2	2	2	7	0.026042
3	3	3	13.056272	
4	4	4	0.028604	0.047791
5	5	5	0.029221	0.063149
6	6	1	4	0.025157
0.096832				
		7	0.041558	0.091160

4 variables that we want to map into a plot

aesthetics

- x, y (position)
- alpha, color, fill
- size
- shape
- linetype

data

head(d)

	X subject	coherence	absent	present
1	1	1	4	0.035996
2	2	2	7	0.087079
3	3	3	13	0.028604
4	0.056272			
5	4	25	0.029221	0.047791
5	5	5	4	0.025157
6	6	1	7	0.064149
				0.041558
0.091160				

4 variables that we want to map into a plot

data

head(d)

	X subject	coherence	absent	present
1	1	1	4	0.035996
2	2	2	7	0.087079
3	3	3	13	0.028604
4	4	4	0.056272	
5	5	5	0.029221	0.047791
6	6	1	4	0.025157
		7	0.096149	
			0.041558	0.091160

4 variables that we want to map into a plot

x, y (position)

data

head(d)

	X subject	coherence	absent	present
1	1	1	4	0.035996
2	0.087079			
2	2	7	0.026042	0.056272
3	3	3	13	0.028604
4	0.047791			
5	5	4	25	0.029221
6	0.063149			
6	6	1	7	0.025157
			0.096832	

4 variables that
we want to map
into a plot
 size

data

head(d)

geometry

- 0d: points, text
- 1d: lines, paths
- 2d: polygons, intervals

geometry

- 0d: points, text
- 1d: lines, paths
- 2d: polygons, intervals

+ scale, coord (aspect ratio), unity line

+ scale, coord (aspect ratio), unity line

themes / look of plot

worth the hassle?

- I think yes: already for basic plotting
- for data exploration we often slice across different dimensions:
- subjects, regions of interest, ...
- measures: RT, \% correct, fMRI response amplitude, ...

facet (lattice)

Data for different subjects

rearrange

But I do use Matlab

\# bash
cd ~/matlab
git clone https://github.com/piermorel/gramm

> [or download + extract zip file]
\% in matlab addpath(genpath('~/matlab/gramm'))
[or put this in your startup.m file]

using the same approach in mat lab/GRAMM

COde: \(\begin{gathered}https://gist.github.com/schluppeck/
9a54b9b7a37793d8959779629b4cd2fc\end{gathered}\)

\% Load example dataset
load carbig.mat
\% CREATE a gramm object with data -> AES g=gramm('x', Model_Year,'y', . . .)
\% Plot raw data as points g.geom_point()
\% Do the actual drawing
g.draw()

Figure 1
File Edit View Insert Tools Desktop Window Help
Fuel economy of new cars between 1970 and 1982

figure
h=gramm('x',Model_Year,'y',. . .)
h.geom_point()
\% Plot linear fits of the data
\% with associated confidence intervals
h.stat_glm()
\% Subdivide the data in subplots
\% horizontally by region of origin
h.facet_grid([],origin_region)
\% and draw this one h.draw()

Visualization of X densities

Visualization of repeated trajectories

'geom' options for stat_bin()

https://github.com/piermorel/gramm

https://github.com/piermorel/gramm

(tidy) data

head(e)

	X subject	coherence condition	statistic	
1	1	1	4	absent
2	2	2	0.035996	
3	3	3	13	absent
4	0.026042			
5	4	25	absent	0.028604
5	5	5	4	absent
6	6	1	7	0.029221
				absent
0.025157				
0.041558				

4 variables

side note: to fully make use of ggplot, it's best if the data are tidy (for details see http://vita.had.co.nz/papers/tidy-data.pdf)

