Psychology Home

Neuroscience @ Nottingham

Tobias Bast 





·          Biography

·          Research

·          Current Projects

·          PhD Students

·          PhD Opportunities

·          Selected Publications

·          Teaching

·          Contact Information







2002: PhD, Swiss Federal Institute of Technology (ETH) Zurich

1999: Diploma in Biochemistry (subsidiary subjects: Biopsychology and Philosophy), Ruhr-University Bochum, Germany


Since Oct 2008: Lecturer, School of Psychology, University of Nottingham,UK

2005-2008: Caledonian Research Foundation Fellow, Centre for Cognitive and Neural Systems, University of Edinburgh,UK

2003-2005: Research fellow, Division of Neuroscience, University of Edinburgh, UK

1999-2003: Research associate/ Scientist, Behavioural Neurobiology, Swiss Federal Institute of Technology (ETH) Zurich

1998-1999: Studentische Hilfskraft (undergraduate assistant), Biopsychology Group, Ruhr-University Bochum, Germany





My interests are in the area of integrative and behavioural neuroscience: How do neuronal mechanisms generate adaptive behaviour? How does dysfunction of these mechanisms contribute to neurological and neuropsychiatric diseases?

From rapid memory encoding to adaptive behaviour – functional differentiation and integration in the hippocampus

Focusing on the hippocampus, my research is concerned with the brain mechanisms mediating memory and other behavioural functions, such as emotional, motivational, and sensorimotor functions, and, especially, the integration of these diverse functions. Combining behavioural testing with the manipulation and analysis of brain function in rats, I study hippocampal functions, the underlying mechanisms and connectivity, and the consequences of hippocampal dysfunction that characterises many neuropsychiatric populations.

Functional-anatomical model of the hippocampus: implications for behaviour in health and disease

My research is led by the idea (see Bast T, 2007, Rev Neurosci; Bast, 2011, Curr Opin Neurobiol) that the hippocampus integrates (i) anatomical and physiological substrates of certain types of rapid information encoding (including functional connectivity to entorhinal cortex) with (ii) direct links (via prefrontal cortex and subcortical sites) to behavioural control functions, such as emotional, motivational, executive, and sensorimotor processes (see figure). Thereby, in humans and other mammals, normal hippocampal function may enable rapid place and episodic(-like) learning (i.e., encoding of events and their spatio-temporal context), and the translation of such learning into behaviour. Examples of such behaviour include our returning to where we parked our car or placed our key this morning, or a rat’s returning to where it found food or safe refuge on a previous occasion. On the other hand, permanent hippocampal damage may result in striking and specific memory deficits, as reported in the famous case studies of H.M. and other patients; furthermore, hippocampal dysfunction, as found in schizophrenia, mood, and anxiety disorders, may, apart from memory deficits, also contribute to other functional impairments, including aberrant emotional, motivational, sensorimotor and executive functions.

Research methods

To study brain, especially hippocampal, substrates of complex behaviour, I have been combining sophisticated behavioural testing with brain manipulation and analysis in rats. Main approaches include:

·  Well-established and innovative behavioural tests to examine (i) learning and memory (including animal models relevant to declarative and episodic memory) and (ii) emotional and sensorimotor processes (animal models relevant to schizophrenia and anxiety disorders). Specific paradigms include: event-arena procedures (food-reinforced place-memory tests in a novel dry-land apparatus), watermaze procedures, fear conditioning, prepulse-inhibition and startle testing, open-field testing.

·  Selective neuropharmacological (intracerebral microinfusions) and brain-lesion (cytotoxic lesions, fibre cuts) techniques to manipulate (i) specific components of the hippocampal circuitry and their interaction and (ii) cortical and subcortical structures connected to the hippocampus.

·  In vivo electrophysiology, in vivo microdialysis, anatomical techniques, and, most recently, in vivo MRI to characterise the pathways and mechanisms underlying the behavioural significance of the different components of the hippocampal circuitry.



Current Projects


Functional significance of hippocampal and prefrontal disinhibition in schizophrenia: integrative in vivo studies in rat models

Disinhibition, i.e. impaired inhibitory GABA transmission, in the prefrontal cortex and hippocampus has emerged as key feature of schizophrenia pathophysiology (see here). In current work, led with Marie Pezze, we examine if and how prefrontal and hippocampal disinhibition disrupt cognition and behaviour. To this end, we study the neural-network effects and behavioural/cognitive deficits resulting from such disinhibition in rodent models. The work on hippocampal disinhibition is guided by hypotheses based on the functional-anatomical model of the hippocampus described above (see Bast, 2011, Curr Opin Neurobiol).

Further information: Bast T, McGarrity S, Mason R, Fone KC, Pezze M (2013) S. 28.03 Schizophrenia-related behavioural deficits caused by hippocampal and prefrontal disinhibition. Eur Neuropsychopharmacol 23: S153; McGarrity S, Mason R, Fone KC, Pezze M, Bast T (2013) P1.j.026 Cognitive deficits caused by hippocampal disinhibition: attentional and memory deficits. Eur. Neuropsychopharmacology 23, S296-297;

Pezze M, McGarrity S, Mason R, Fone K, Bast T (2014) Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci 34:  7931-7946


Hippocampal learning-behaviour translation: prefrontal and subcortical substrates

It is firmly established that the hippocampus is required for certain types of everyday learning, including place learning, and we have achieved remarkable insights into the underlying neural mechanisms of information encoding and storage. However, how is, for example, place memory translated into appropriate behaviour, such as returning to that place? A key idea is that this translation may require interactions of the hippocampus with brain sites playing central roles in behavioural control, such as prefrontal cortex and subcortical sites, including striatum (Bast, 2011, Curr Opin Neurobiol). Consistent with this idea, we provided evidence that the direct translation of rapid place learning into behavioural performance depends on a region of the hippocampus where neural substrates of accurate place encoding converge with links to prefrontal and subcortical sites (Bast et al, 2009, PLoS Biol). In current work, we aim to determine which prefrontal and subcortical sites contribute to the learning-behaviour translation and how the hippocampus interacts with these sites.



PhD Students


Stephanie McGarrity, 1+3 MSc/PhD student, start: September 2010, funding: School of Psychology Postgraduate Studentship. Topic: Neuro-behavioural effects of hippocampal disinhibition.



PhD Opportunities


The School of Psychology awards ca. 8 PhD studentships (ca. £13,000 living allowance p.a. plus Home/EU student fees) each academic year. If you are interested in the research and projects outlined above and would like to work towards a PhD in this area, please contact me well in advance of the mid-February deadline for School Studentship applications. Suitable candidates would typically have some relevant research experience (e.g., from undergraduate or MSc projects).



Selected Publications


Pezze M, McGarrity S, Mason R, Fone K, Bast T (2014) Too little and too much: hypoactivation and disinhibition of medial prefrontal cortex cause attentional deficits. J Neurosci 34:  7931-7946 (Open Access) (Press release)

da Silva BM, Bast T, Morris RGM (2014) Spatial memory: behavioral determinants of persistence in the watermaze delayed matching-to-place task. Learn Mem 21: 28-36 (PDF) (Cover image)

Pezze M, Bast T (2012) Dopaminergic modulation of hippocampus-dependent learning: Blockade of hippocampal D1-class receptors during learning impairs 1-trial place memory at a 30-min retention delay. Neuropharmacology 63: 710-718 (PDF)

Bast T (2011) The hippocampal learning-behavior translation and the functional significance of hippocampal dysfunction in schizophrenia. Curr Opin Neurobiol 21: 492-501 (PDF)

Jackson SJ, Hussey R, Jansen MA, Merrifield GD, Marshall I, MacLullich A, Yau JLW, Bast T (2011) Manganese-enhanced magnetic resonance imaging (MEMRI) of rat brain after systemic administration of MnCl2: hippocampal signal enhancement without disruption of hippocampus-dependent behavior. Behav Brain Res 216:233-300 (PDF)

Bast T, Wilson IA, Witter MP, Morris RGM (2009) From rapid place learning to behavioral performance – a key role for the intermediate hippocampus. PLoS Biol 7(4): e1000089. (PDF small, PDF large); see here for news release.

Bast T (2007) Toward an integrative perspective on hippocampal function - from the rapid encoding of experience to adaptive behavior. Rev Neurosci 18: 253-281 (PDF)

Bast T, Da Silva BM, Morris RGM (2005) Distinct contributions of hippocampal NMDA and AMPA receptors to encoding and retrieval of one-trial place memory. J Neurosci 25: 5845-5856 (PDF)

Peleg-Raibstein D, Pezze MA, Ferger B, Zhang W-N, Murphy CA, Feldon J, Bast T (2005) Activation of dopaminergic neurotransmission in the medial prefrontal cortex by NMDA stimulation of the ventral hippocampus in rats. Neuroscience 132: 219-232 (PDF)

Bast T, Feldon J (2003) Hippocampal modulation of sensorimotor processes. Prog Neurobiol 70: 319-345 (PDF)

Bast T, Zhang W-N, Feldon J (2003) Dorsal hippocampus and classical fear conditioning to tone and context in rats: the effects of local NMDA-receptor blockade and stimulation. Hippocampus 13: 657-675 (PDF)

Pezze MA, Bast T, Feldon J (2003) Significance of dopamine transmission in the rat medial prefrontal cortex for conditioned fear. Cereb Cortex 13: 371-380 (PDF)

Click here for GoogleScholar profile (including a full list of publications).




Year 1

C81ADD: Psychology of Addiction. Handouts for my lecture can be found here.

C81BIO: Introduction to Biological Psychology and Cognitive Neuroscience. Handouts for my lectures can be found here.

1st Year Tutorials: Information can be found here.

Year 2

C82NAB: Neuroscience and Behaviour. Handouts for my lectures can be found here.

C82MST: Statistical Methods 2. Handouts and material for my lectures can be found here.

C82MPR: Practical and Statistical Methods. Handouts for the lecture in week 1 can be found here.

2nd Year Tutorials: Information can be found here.

Year 3

C83MLP: Mechanisms of Learning and Psychopathology. Handouts for my lectures can be found here.

C83MAB: Mind and Brain. Handouts for my lectures can be found here.

C83MPR: Research Project. A description of the project and project-related material can be found here.

MSc Brain Imaging

Material for my lecture in C84FIM and for my seminar in C84LCN can be found here.

MSc/PGDip Psychology (Conversion)

Material for my C84NAB seminars can be found here.

BAP Preclinical Certificate Course

Module 8: Combining Neurobiology and Behaviour.



Contact Information


Tobias Bast, Room B26

School of Psychology

University of Nottingham

University Park




Tel: +44 115 84-67438


Content: email
HTML: Lee Melton

School of Psychology, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
Tel: +44 [0]115-951-5361, Fax: +44 [0]115-951-5324