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Teaching Bayesian Reasoning in Less Than Two Hours

Peter Sedlmeier
Chemnitz University of Technology

Gerd Gigerenzer
Max Planck Institute for Human Development

The authors present and test a new method of teaching Bayesian reasoning, something about which
previous teaching studies reported little success. Based on G. Gigerenzer and U. Hoffrage’s (1995)
ecological framework, the authors wrote a computerized tutorial program to train people to construct
frequency representations (representation training) rather than to insert probabilities into Bayes’s rule
(rule training). Bayesian computations are simpler to perform with natural frequencies than with
probabilities, and there are evolutionary reasons for assuming that cognitive algorithms have been
developed to deal with natural frequencies. In 2 studies, the authors compared representation training
with rule training; the criteria were an immediate learning effect, transfer to new problems, and long-term
temporal stability. Rule training was as good in transfer as representation training, but representation
training had a higher immediate learning effect and greater temporal stability.

Statistical literacy, like reading and writing, is indispensable for
an educated citizenship in a functioning democracy, and the dis-
semination of statistical information in the 19th and 20th centuries
has been linked to the rise of democracies in the Western world
(Porter, 1986). Interest in statistical information such as population
figures has been common among political leaders for centuries
(e.g., Bourguet, 1987). The willingness to make economic and
demographic numbers public rather than to treat them as state
secrets, however, is of recent origin: The avalanche of printed
statistics after about 1820 both informed the public and justified
governmental action to the public (Kriiger, Daston, & Heidel-
berger, 1987). Nevertheless, unlike reading and writing, statistical
literacy—the art of drawing reasonable inferences from such num-
bers—is rarely taught (e.g., Garfield & Ahlgren, 1988; Shaug-
nessy, 1992). The result of this has been termed “innumeracy”
(Paulos, 1988).

In this article, we address the question of how best to teach
statistical literacy. We focus on the special case of Bayesian
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inference with binary hypotheses and binary information (for
results of training in reasoning about other kinds of statistical
tasks, see Sedlmeier, 1999, 2000). Here are two examples to which
this form of statistical inference applies. First, consider the case of
a 20-year-old man from Dallas who had a routine HIV test (Gig-
erenzer, 1998). The test result was positive; the young man as-
sumed this meant he was infected with the virus and was plagued
by thoughts of suicide. But what is the probability that he really
has the virus given a positive test? Or consider the case of Alan M.
Dershowitz, a Harvard professor and advisor to the O. J. Simpson
defense team. He stated on U.S. television that only about 0.1% of
wife batterers actually murder their wives and claimed that there-
fore evidence of abuse and battering should not be admissible in a
murder trial. But what is the probability that the husband was the
murderer, given that he battered his wife and the wife was killed
(Good, 1995; Koehler, 1997)?

Bayesian Inference

Our goal is to design an effective method of teaching Bayesian
inference. This goal might appear to be doomed to failure for two
reasons. First, a large body of experimental results suggests that
Bayesian inference is alien to human inference; second, a small
number of studies actually attempting to teach people Bayesian
reasoning met with little or no success. These two reasons need to
be addressed in more detail.

Since the pioneering work of Ward Edwards and his colleagues,
an avalanche of experimental studies has investigated whether
people reason according to Bayes’s rule (for a summary, see
Koehler, 1996). Edwards’s (1968) major finding was “conserva-
tism,” that is, that participants overweighed base rates. In the
1970s, however, Kahneman and Tversky (1972) argued that “in his
evaluation of evidence, man is apparently not a conservative
Bayesian: he is not a Bayesian at all” (p. 450). Neglect rather than
overweighing of base rates became the message of their heuristics-
and-biases program in the 1970s and 1980s. “The genuineness, the
robustness, and the generality of the base-rate fallacy are matters
of established fact” (Bar-Hillel, 1980, p. 215). These demonstra-
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tions that human inference deviated radically from Bayesian in-
ference were not confined to laboratory studies; some experts
conducted studies in the field and reported similar results. For
instance, Eddy (1982) asked physicians to estimate the probability
that a woman with a positive mammogram actually has breast
cancer, given a base rate of 1% for breast cancer, a hit rate of about
80%, and a false-alarm rate of about 10%. He reported that 95 of
100 physicians estimated the probability that she actually has
breast cancer to be between 70% and 80%, whereas Bayes’s rule
gives a value of about 7.5%. Such systematic deviations from
Bayesian reasoning have been called “cognitive illusions,” analo-
gous to stable and incorrigible visual illusions (von Winterfeldt &
Edwards, 1986; for a discussion of the analogy, see Gigerenzer,
1991).

If the analogy between cognitive illusions and visual illusions
holds, the teaching of statistical reasoning should have little hope
of success. This conclusion seems to be confirmed by the results of
the few studies that have attempted to teach Bayesian inference,
using mostly corrective feedback. Peterson, DuCharme, and Ed-
wards (1968) repeatedly showed their participants binomial sam-
pling distributions to correct their “conservative” judgments. Yet,
this training did very little to reduce conservatism in further
judgments of the same type. Schaefer’s (1976) statistically well
trained participants received corrective feedback on their estima-
tions of probabilities and also showed practically no training
effect. Lindeman, van den Brink, and Hoogstraten (1988) gave
corrective feedback on participants’ solutions of problems like
those used by Kahneman and Tversky (1973). No transfer effect
was found in the test phase. Finally, Fong, Lurigio, and Stalans
(1990) trained participants on the “law of large numbers™ rather
than on what they called the “base-rate principle” and thereby only
indirectly trained Bayesian inference; this training enhanced the
use of base-rate information in only one of several experimental
conditions. In these studies, training had little or no success.! The
negative conclusions of the heuristics-and-biases program (Kah-
neman & Tversky, 1996) and the meager results of the teaching
studies seem to suggest to many what Gould (1992) so bluntly
stated: “Tversky and Kahneman argue, correctly I think, that our
minds are not built (for whatever reason) to work by the rules of
probability” (p. 469).

Bayesian Algorithms Depend on Information Format

In the face of these results there seems to be little hope for a
successful method of teaching Bayesian inference and statistical
reasoning in general. And we would not have tried had there not
been two novel results, both theoretical and empirical (Gigerenzer
& Hoffrage, 1995). To understand the novelty of the theoretical
results, one needs to recall that research on statistical reasoning has
focused on whether cognitive algorithms correspond to the laws of
statistics or probability (as Piaget & Inhelder, 1951/1975, claimed
for children aged 11 and older) or to simple nonstatistical rules of
thumb, as Kahneman and Tversky (1996) claim. However, to
discuss human inference only in terms of “what kind of rule?” is
incomplete because cognitive algorithms work on information, and
information always needs representation (Marr, 1982). Take nu-
merical information and the algorithms in a pocket calculator as an
example. Numerical information can be represented by the Arabic
system, the Roman system, and the binary system, among others.
These representations are mathematically equivalent (an isomor-

phic mapping exists), but they are not equivalent for a calculator or
a mind. The algorithms of pocket calculators are tuned to Arabic
numbers as input data and would perform badly if one entered
binary numbers. The human mind seems to have evolved and
learned analogous preferences for particular formats. Contemplate,
for a moment, long division with Roman numerals.

The argument that cognitive algorithms are tuned to particular
formats of numerical information connects cognition with the
environment and can be applied to Bayesian inference. Assume
that some capacity or algorithm for inductive inference has been
built up in animals and humans through evolution. To what infor-
mation format would such an algorithm be tuned? It certainly
would not be tuned to percentages and probabilities (as in the
typical experiments on cognitive illusions) because these took
millennia of literacy and numeracy to evolve as tools of commu-
nication. Mathematical probability and percentages are, after all,
comparatively recent developments (Gigerenzer et al., 1989).
Rather, in an illiterate world, the input format would be natural
frequencies, acquired by natural sampling (see below).

The crucial theoretical results are (a) that Bayesian computa-
tions are simpler when information is represented in natural fre-
quencies compared with probabilities, percentages, and relative
frequencies and (b) that natural frequencies seem to correspond to
the format of information humans have encountered throughout
most of their evolutionary development (Cosmides & Tooby,
1996; Gigerenzer, 1994, 1998; Gigerenzer & Hoffrage, 1995;
Kleiter, 1994). Let us illustrate the concept of natural frequencies
and how they facilitate computations with the mammography
problem introduced earlier, in the form in which it was used in our
training study:

A reporter for a women’s monthly magazine would like to write
an article about breast cancer. As a part of her research, she
focuses on mammography as an indicator of breast cancer. She
wonders what it really means if a woman tests positive for breast
cancer during her routine mammography examination. She has the
following data:

The probability that a woman who undergoes a mammography will
have breast cancer is 1%.

If a woman undergoing a mammography has breast cancer, the prob-
ability that she will test positive is 80%.

If a woman undergoing a mammography does not have cancer, the
probability that she will test positive is 10%.

What is the probability that a woman who has undergone a mammog-
raphy actually has breast cancer if she tests positive?

! There were also attempts to improve Bayesian reasoning by focusing
participants’ attention on certain parts of Bayes's formula. Fischhoff,
Slovic, & Lichtenstein (1979, Study 1) tried to increase participants’
sensitivity to the impact of base rates by varying the base rates of a
Bayesian problem within the same individual but withou1 giving feedback
on participants’ solutions. This manipulation had almost no generalizing
effect on a second task. In three experiments, Fischhoff and Bar-Hillel
(1984) examined the effect of different focusing techniques on perfor-
mance of Bayesian inference tasks. They found that participants took the
information to which the experimenters called their attention into account,
but this was done equally for relevant and irrelevant information. In a
recent study, Wolfe (1995, Experiment 3) found comparable results.
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The numerical information in the mammography problem is
represented in terms of single-event probabilities, that is, in a
probability format. The three pieces of information are the base
rate p(cancer) = .01, the hit rate p(positive | cancer) = .8, and the
false-alarm rate p(positive | no cancer) = .1. The task is to estimate
the posterior probability p(cancer ! positive). The Bayesian algo-
rithm for computing the posterior probability from the probability
format amounts to solving the following equation:

p(cancer)p(positive | cancer)

iti = T
plcancer|positive) plcancer)p(positive | cancer)

+ p(no cancer)p( positive | no cancer)

.01 X .80/(.01 X .80 + .99 X .1)
= .075. (Y]

Both laymen and physicians have great difficulties with Bayes-
ian inference when information is given in a probability format
(e.g., Abermnathy & Hamm, 1995; Dowie & Elstein, 1988). For
instance, Hoffrage and Gigerenzer (1998; Gigerenzer, 1996)
tested 48 physicians on four standard diagnostic problems, includ-
ing mammography. When information was presented in terms of
probabilities, only 10% of the physicians reasoned consistently
with Bayes’s rule. Gigerenzer, Hoffrage, and Ebert (1998) studied
how AIDS counselors explain what a low-risk client’s chances are
that he actually has the virus if he tests positive. As an assumed
client, one of the authors visited 20 public health centers in
Germany to have 20 counseling sessions and HIV tests. All the
counselors communicated the risks in probabilities and percent-
ages (rather than in natural frequencies, see below) and consis-
tently overestimated the posterior probabilities of having the virus
given a positive test (15 of 20 counselors estimated the probability
as 99.9% or higher, whereas a reasonable estimate is about 50%),
and some counselors even gave inconsistent probability judgments
without noticing.

Do these and similar results imply that people are not
Bayesians? As the pocket calculator example illustrates, such a
conclusion may be unwarranted. Let us now change the format of
information from probabilities and percentages to natural frequen-
cies. Natural frequencies represent numerical information in terms
of frequencies as they can actually be experienced in a series of
events. More technically, natural frequencies are frequencies that
have not been normalized with respect to the base rates; that is,
they still carry information about base rates (Gigerenzer & Hof-
frage, 1995, 1999):*

A reporter for a women’s monthly magazine would like to write
an article about breast cancer. As a part of her research, she
focuses on mammography as an indicator of breast cancer. She
wonders what it really means if a woman tests positive for breast
cancer during her routine mammography examination. She has the
following data:

Ten of every 1,000 women who undergo a mammography have breast
cancer.

Eight of every 10 women with breast cancer who undergo a mam-
mography will test positive.

Ninety-nine of every 990 women without breast cancer who undergo
a mammography will test positive.

Imagine a new representative sample of women who have had a
positive mammogram. How many of these women would you
expect to actually have breast cancer?

What is the Bayesian algorithm when the information is pre-
sented in natural frequencies? There are 8 women with positive
tests and breast cancer (P & C) and 99 women with positive tests
and no breast cancer. Thus, the proportion of women with breast
cancer among those who test positive is 8 out of 107 (8 + 99).
Expressed in probabilities one gets

p(cancer|positive) = #(P & C)/#P

i

8/107
=.075. 2)

Thus, Bayesian computations are simpler when the information
is represented in a frequency format (i.e., natural frequencies)
rather than in a probability format (Gigerenzer & Hoffrage, 1995).
In the frequency format, one can immediately “see” the answer:
About 8 of 107 women who test positive will have cancer. The
general point here is that Bayesian algorithms are dependent on the
information format. Note that the two information formats—prob-
ability and frequency—are mathematically equivalent, and so are
the two equations; but the Bayesian algorithms are not computa-
tionally and psychologically equivalent.

Consistent with the theoretical result that Bayesian algorithms
are simpler to use with natural frequencies than with the widely
used probabilities, and the ecological thesis that, if the mind has
evolved Bayesian algorithms, these are likely to be tuned to natural
frequencies, experimental studies have shown that people are more
likely to use Bayesian reasoning with natural frequencies. Giger-
enzer and Hoffrage (1995) tested laypeople on 15 Bayesian infer-
ence problems such as the mammography problem and found that,
in every single one, Bayesian reasoning occurred more often when
probabilities were replaced with natural frequencies (the two for-
mats shown earlier), with an average increase in Bayesian solu-
tions from 16% to 46%. Bayesian reasoning was measured both by
process analysis and by outcome analysis. Similar results with
laypeople were found by Christensen-Szalanski and Beach (1982)
and Cosmides and Tooby (1996). Hoffrage and Gigerenzer (1998)
tested physicians with an average of 14 years professional expe-
rience and found that natural frequencies improve “imsight” in
physicians to about the same extent as in laypeople. As mentioned
earlier, with probabilities, physicians found the Bayesian answer in
only 10% of the cases; when the same information was represented
in natural frequencies, this number went up to 46%.

We applied these theoretical and empirical results when design-
ing a tutorial program for teaching Bayesian reasoning, focusing
on everyday situations rather than on the abstract world of “urns
and balls.”

2 Natural frequencies must not be confused with frequencies that have
been normalized with respect to the base rates. For instance, the informa-
tion in the mammography problem can be expressed in relative frequencies
that are normalized with respect to the base rates: a base rate of .01, a hit
rate of (.80, and a false positive rate of 0.10. Also, absolute frequencies can
be normalized: a base rate of 1 in 100, a hit rate of 80 in 100, and a false
positive rate of 10 in 100. Normalized frequencies, like probabilities or
percentages, are normalized numbers that no longer camry information
about natural base rates (e.g., about the base rate of breast cancer). They do
not facilitate Bayesian reasoning.
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Teaching Bayesian Inference

Teaching representations is an alternative to the traditional
program of teaching rules, that is, teaching rules without simulta-
neously teaching representations (e.g., Arkes, 1981). A rule train-
ing program would try to teach Bayesian reasoning by first ex-
plaining Bayes’s rule in its abstract form and then explaining how
to insert single-event probabilities into the rule (Falk & Konold,
1992). We are not aware of any studies on rule training for
Bayesian reasoning, but rule training programs exist for other
statistical rules, such as for the “law of large numbers,” more
precisely, for recognizing the impact of sample size (see Sedlmeier
& Gigerenzer, 1997, 2000).” For instance, Fong and Nisbett (1991)
proposed rule training for the law of large numbers and found
moderate improvement over an untrained control; when generali-
zation to a new domain was tested after 2 weeks, this moderate
effect was considerably diminished (Ploger & Wilson, 1991;
Reeves & Weisberg, 1993).

We propose an alternative method: teaching Bayesian reasoning
by showing people how to construct frequency representations. For
this purpose, we designed two versions of frequency representa-
tions. One, the frequency grid, has been suggested as a means to
make the understanding of statistical tasks easier (e.g., Cole,
1988), and the second, the frequency tree, is a variant of a tree
structure often used in decision analysis. In the frequency grid
tutorial, participants learned how to construct frequency represen-
tations by means of grids, and in the frequency tree tutorial, they
learned to construct frequency representations by means of trees.
We also designed a rule training tutorial as a control, with which
participants were taught how to insert probabilities into Bayes’s
formula. All three tutorials were implemented as a computer
program on Macintosh computers, written in Macintosh Common
Lisp (Apple Computer, Inc., 1992).

In all conditions, the basic training mechanism was to have
participants translate the information in the problem text into a
given format, that is, Bayes’s formula, the frequency grid, or the
frequency tree, and have them practice with those formats. The
training procedure for each of the tutorials had two parts. The first
part guided participants through two inferential tasks—the sepsis
problem (see below) and the mammography problem. In the rule
training tutorial, participants were instructed how to insert proba-
bility information into Bayes’s formula. In the two tutorials that
taught frequency representations, the system showed participants
how to translate probability information into either a frequency
grid or a frequency tree. After they were guided through each step
in Part 1, the second part of the training required participants to
solve eight additional problems on their own with step-by-step
feedback. The system asked them to solve each step before going
on to the next one. If participants had difficulties with following
the requests or made mistakes, the system provided immediate
help or feedback. If, for instance, the user was required to enter
numbers in the formula or the frequency tree, and the numbers
entered were not correct, the system gave immediate feedback.
The user always had a choice between trying again or letting the
system perform the corrections. If the user decided to try again, the
system supplied some hints that were specific to the format used.
If, after several corrective interventions, the user was still unable to
fill in the numbers correctly and did not want to try again, the
system inserted the correct numbers into the respective nodes
(frequency tree) or slots (formula). For all training procedures, the

help was sufficient to ensure that all participants would solve all
problems correctly and complete the training.

We now describe the rule training procedure and the two fre-
quency representation training procedures (see Sedlmeier, 1997,
for a detailed description of an extended version of the system, and
for a program that provides a comprehensive treatment of basic
probability theory and that includes Bayesian reasoning as a part,
see Sedlmeier & Kohlers, 2001).

Rule Training

During training and in all three tutorials, participants saw three
windows on the screen. The problem window, located in the top
right portion (see Figure 1), displayed the problem text, in this
case, the text of the sepsis problem. The tutor window (white area)
provided the explanations and instructions and asked the user to
perform certain actions. The representation window (left half of
Figure 1) performed demonstrations and allowed the user to ma-
nipulate its contents. Figure 1 shows a screen at the beginning of
the first part of the rule training procedure. Just before, the pro-
gram had explained to the participant that Bayes’s formula allows
one to calculate the probability that the walk-in patient who
displays the symptoms mentioned in the problem has sepsis. The
program had also mentioned that to calculate that probability, one
needs p(H), p(not H), p(D | H), and p(D | not H). H is short for
hypothesis, such as sepsis, and D stands for data such as the
presence of the symptoms. At the current point in the training, the
system begins to explain how to extract the numerical information
from the problem text. The tutor window in Figure 1 explains
which information in the problem text corresponds to p(H), the
base rate. In the next step (not shown), the base-rate information is
“translated” into a component of Bayes’s formula. In this step, the
empty slot in the representation window is filled with the base-rate
value of 0.1, and it is explained how the next piece of information,
p(not H), is calculated from the value of p(H) by subtracting it
from 1. Then, analogously, the program explains which parts of the
problem text correspond to p(D | H), the hit rate, and p(D | not H),
the false-alarm rate, and inserts the respective probabilities, that
is, 0.8 (the probability of the symptoms given sepsis) and 0.1 (the
probability of the symptoms given no sepsis). When the slots for
the four bits of information are filled, the system creates an
initially empty “frame” for Bayes’s formula and demonstrates how
the probabilities are to be inserted into the frame. Inserting the
correct numbers into that frame and calculating the result gives the
posterior probability p(sepsis | symptoms). Figure 2 shows this
final state of the translation process for the mammography prob-
lem. All pieces of information needed in Bayes’s formula have
been extracted from the problem text and inserted into the respec-
tive slots (Figure 2, upper left). Then, the frame for Bayes’s
formula has been filled with the respective probabilities (lower
left) and the result has been calculated (lower right). In the second
part of the training procedure, the upper part of the representation
window, including the formula, was shown immediately. The

3 Other authors have provided advice on how to reason the Bayesian way
but have not reported training studies. Such advice includes structuring the
problem, modeling prior probabilities explicitly, stressing the statistical
nature of base rate information, clarifying causal chains, and providing
individuating information about base rates (e.g., von Winterfeldt & Ed-
wards, 1986).
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Bayes-Formula

Figure 1.
problemi.

frame for Bayes™s formul appeared only when all the probabilities
had been correctly filled in,

Frequency Grid

In & frequency gnid. each square represents one case. Figure 3
shows a screen at the beginning of the first part of the frequency
gnd training procedure. Just before, the program had informed the
participants that the empty squures in Figure 3 represent 100
walk-in patients. Again, the tutor window explains which pan of
the problem text corresponds to the buse rate. In the next step (nol
shown), 10 of the 100 squares are shaded 10 represent the 10% of
walk-in patients who suffer from sepsis, Eventually, circled pluses
{"positives™) are added 10 8 of the 10 shaded squares {correspond-
ing 1o the hit rate of 80%) and 16 9 of the 90 nonshuded squares
{corresponding to the false-alarm rate of 10% ). Figure 4 shows the
point in training when all the information necessary to solve
the sepsis problem is filled in on the frequency grid. The ratio of
the number of circled pluses in the shaded squares divided by the
number of all circled pluses gives the desired postenior probability,
that is. p(sepsis | symptoms).

Participants could choose between two grid sizes (100 and 1,000
cases) and were encouraged 1o select the one that best represented
the information given in a problem. For instance, for the mam-
mography problem, the 50 X 20} grd is supenor 1o the 10 % 10
grid because, in the latter, one would have 10 deal with “rounded”
persons, Figure $ shows the completely filled in frequency grd for
the mammography problem. where the ratio of the number of

Looking at the prablem, we find that 10% of
the walk-In patients have had sepsis.
Therefore the probabllity Tor a patient
having sepsis is 0.1 (10 divided by 100, or
dacimal poinl moved fram 10.0 to .1). This s
the first piece of information we need in the
Tormula.

Rule raining (Bayes's rule). Sceeen shot Is from the beginaing of the first phuse of triining (xepsis

circled pluses in the shaded squares (%) divided by the number ot
all circled pluses (107) gives the desired posterior probability
picancer | positive test) =.075,

Frequency Tree

A frequency tree (Figures 6 and 71 does not represent individual
cases but constructs a reference class (total number of ubservi-
tions) that is broken down mto four subclasses. The twp node
shows the size of the reference ¢lass (100 in Figure 6, and 1000 in
Figure 7). which can be chosen freely i the program. In Figure 6,
the program expiaing how one obiains the base-rawe frequency of
the walk-in patients (o be inserted in the “sepsis” node left middle
node) from the problem text. In the next step (not shown). /0 js
inseried in the sepsis node and the program eaplains how one
obtains the number to be inserted in the “no sepsis™ node by
subiracting the 10 paticnis with sepsis from all [0 patients),
Eventually. the 10 patients in the sepsis node are divided into 8
(BO% of 10) showing the symptoms and 2 not showing the symp-
toms (lefl two lower nodes), and the 90 paticnis in the no sepsis
node are divided into 9 (10 of 90) showing the symptoms and 81
not showing the symptoms. The posterior probability pisepsis |
symptoms) is calculated by dividing the number in the left black
node, the number of true positives, by the <um of the numbers in
both black nodes, the il number of positives,

Figure 7 shows the complete frequency tree for the mammog:
raphy problem: The two middle nodes specify the buse-rate Ire-
quencies. that is. the number of cuses for which the hypothesis 1
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Dages Formulo

—— r——

pIDIH}

plolnut i

Calculating the probabllity thal o woman
has actually breast cancer if she has a
positive test resull finally gives 075

Figure 2
problem)

true (10 women with breast cancer) and the number of cases for
which the hypothesis 1s false (990 women withoul breast cancer),
The four nodes at the lowext level split up the base-rate frequencies
according to the diagnosnic mformation (the resull of the mam-
mography). The posterior probability picancer | positive test) is
again caleulated by dividing the number in the left black node, the
trie positives, by the sum of the numbers in both black nodes, the
total number of positives.

Evaluation of Training Effectiveness

Tor measure the effeqt of tramning—representstion or rule tran-
ing—the test problems were always given m a probability formar.
Before pariicipants started to work on the problems, the program
was explained and it was made sure that they understood all
instructions. Figure 8 shows an example of a test problem pre-
sented 1o the panicipants, the ¢ab problem (Tversky & Kahneman,
1982). The problem text and the question werg always in Iwo
differem windows, Parucipants did not have to do the calculations;
they were encournged just to type in their solution as a formula. A
formula consisted of numbers, arithmetic operators, and parenthe-
sex This unswer [ormat was used to munimize errors due to faulty
calculations. To avoid 4 systematic effect of problem difficulty on
training results, the order of problems was systematically varied
between participants in Study la and completely counterbalanced
according 10 a Latm square in Studies 1b and 2.

In all studies, training effectiveness was measured by comparing
participants” solution rates immediately after the training (Test 2).

Continue

Rule training (Bayes's rule). Screen shot ix from the end of the first phase of training (mammography

about a week after the traming (Test 3), and | =3 months after the
training (Test 4) with the solution rates at baseline (Test |).

Two Sconng Criteria

We used two cntena 1o classify an answer as a Bayesian
solution, one strict and one liberal. For the strict criterion, the
posterior probability calculated by the participant—either in the
form of a numerical value or a formula—had to match exactly the
value obtained by Bayes's rule, rounding up or down to the next
digit (percentage point). This measure might, however, obscure the
fact that participants gained some “ballpark™ insight that enabled
them to produce a sound but inexact response. To take this pos-
sibility into account, we also used a more liberal scoring enterion,
which counted a participant’s estimate as a Bayesian solution
when it came within =five percentage points of the value obtained
by Bayes's rule. The liberal enterion. however, increased the
possibility that non-Bayesian reasoning is mistaken as Bayesian
reasoning. As Gigerenzer and Hoffrage (1995) have demonstrated,
participants  confronted with Bayesian tasks often use non-
Bayesian algorithms, which by accident might yield results that
fall into the interval specified by the liberal scornng criterion. The
most frequent non-Bayesian algorithms they identified include
computing p(H&D) by multiplying p(H) and p{D | H); computing
p(D I H) = p(D | not H); or simply picking p(D | H) or p(H) from
the problem description. In the mammography problem, none of
these alternative strategies leads to a result that would be misclas-
sified by a liberal scoring rule as a "Bayesian solution.” bur this



386

SEDLMEIER AND GIGERENZER

100 cases

Now, looking et the probiem, we see that
10% of the population (walk-in patients)
have had sepsis. Thel means that 10 out of
our 100 patients ectually have sepsis.

Figure 3, Anempty 10 X 10 frequency gnd (grd size 100). Screen shot is from the beginning of the first phase

of training (scpsis problem},

occurs in other problems. The “rubella problem™ illustrates this
case:

In Germany, every expectant mother must have an obligatory
test for rubella infection because children bom to women who
have rubella while pregnant are often born with temble deformi-
tics, The following information is at your disposal:

The probability that a newborn will have deformities traceable o a
sickness of its mother during pregnancy 15 1%,

If a child is born healthy and normal, the probability that the mother
had rubells during her pregnancy is 10%

If a chuld is born with deformities and it can be raced 10 some
sickness of the mother. the probability thar the mother had rubcila
dunng her pregnancy 15 S0%.

What is the probability that a child will be born with deformities if its
mother had rubella during her pregnancy?

The Bayesian solution p(H | D) 15,048, But participants who use
one of two non-Bayesian algorithms, computing p(H&D) = 005
or picking p(H) = .01, will produce estimates that lic in the
interval of =5 percentage points around the Bayesian solution.
These cases would be misclassified by a liberal scoring criterion
but not by a strict scoring criterion (for details, sce Gigerenzer &
Hoffrage. 1995). To reduce the possibility of such misclassifica-
tions, we computed for each problem the results of the non-
Bayesian algorithms, and when a participant responded with ex-
actly one of these results, it was counted as an non-Bayesian
answer even though it was within the 5 percentage points range.

Three Measures of Training Effectiveness

We measured three possible effects of the training: the imme-
diate training effect (Test | compared with Test 2), the generali-
zation or transfer 1o new problems, and the temporal stability of
learning over ime (Test 2 compared with Tests 3 and 4), The most
interesting measure is stabiiity. Many who teach statistics have the
experience that students often study successfully for an exam but
quickly forget what they leamed after the exam: a steep decay
curve. That statistical reasening does nol turn into a habit of mind
may not be entirely the students’ fault; rather. we conjecture. it is
linked to the widespread use of probabilities or percentages as
representations for uncertainties and nsks, If the thesis is correct
that natural frequencies correspond to the format of information
humans have encountered throughout most of their evolutionary
development. one should expect that decay should not be as quick
as with rule training,

Effect sizes rather than significance tests were used for the
statistical analysis of traimng effects (for reasons for using effect
sizes, see Cohen, 1990; Loftus, 1993; Rosnow & Rosenthal, 1996,
Schmidt, 1996; Sedlmeier, 1996, 1999, Appendix C). Correla-
tional effect sizes (r) in all studies were calculated from the results
of significance tests as follows (e.g., Rosenthal & Rosnow, 1991 ):
To evaluate immediate training effects for a given training condi-
tion, effect sizes were obtained from repeated measures analyses of
vanance (ANOVAs) with tests (Test 1, Test 2) as the repeated
factors by calculating r = [FAF + df))'?. To evaluate differential
training effects for iwo given traiming conditions, that is, for how
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L Youare working in an cutpatisnt clinic whare tha
record shows thatduring 1he past year 10% of the

walk-ic patients. bmhadsoeds. A patient walksin.
#ith & high feverand chills, and you also sote that he
hes skin lesions. According to ths records.

e If'a patient hea sepsis, there {5 6n BO% chante that he

or shewill have thess symplons
»'If a patient does not have sepsis, (hera featilla m?r
chance theths 6r2he viushpvthéwunpw

I-_fl peaple whoe actually have sepsis test

. Sepsis
&
T4 Sumptuoms

pusitive thave the symploms), bul so do 9 of
the peaple who do not hove sepsis, What is
the probability that one of these 17 people
who tes! positive has sepsis? Quite simply,
we know thot 8 out of the 1?7 have sepsis.
The solution to the problem Is:

G091 = .47 lor 42%]
Note that we nead 1o extract oniy TWo
pleces ol information from the problem,

|Cunl(nue|

Figure+. A filled 10 % 10 frequency grnd tgnd size 100). Screen shot is from the middle of the first phase of

raining (<epsis problemy

much better one training condition does than the other. the no-
provement scores for the shor-term truming effect (Test 2 = Test
1} and for the long-term training cffect (Test 4 — Test 1) were
used. Effect sizes were obtained from ¢ tests that compared these
improvement scores between the twa conditions by calculating r =
1342 + dN]'™ The tables that report effect sizes also contain test
statistics, that is. values for I and 7, and degrees of freedom so that
interested readers can easily look up p values from tables of the F
and the ¢ distributions.

Note that the effect sizes rely on comparisons between means
and therefore rather underestimate the wue effects if the distribu-
tions contain outliers, This was the case for all studies reponed
here. Therefore, we report i the ligures the more robust medians
that can give a more realistic picture. Unless specitied otherwise,
we report performance in terms of the liberal eriterion. Overall, the
difference between the Iwo criteria was only one of quantity and
not of quality. However. the Appendix shows the complete results,
including medians, means, standard deviations, and group sizes for
both the liberal and strict scoring criteria.

Study la

When people are taught to construct frequency representations,
will their Bayesian reasoning improve after traning ? Will teaching
representations enable the transfer of these new skills 10 new
problems? Will performance decay over time or will there be some
stability? The computational result {that Bayesiun calculations are
easier with natural frequencies) and the evolutionary hypothesis

(that minds are tuned to frequency representations) gave us some
hope for improvement, transfer. and stability. We designed a
training study to put our hopes to the test,

Method

Four groups of participants took part in the study. One group worked
with the frequency grid, one with the frequency tree, and one with the rule
truming. A fourth group did not receive traiming and served as a coatrol.
For the three traming groups, the study consisted of three sessions with four
tests altogether. For the control group, there were two sessions and (wo
tests. The training and all tests were administered on the computer.

Procedure. Teat | (first session) provided a bascline for performance.
Participants were given [0 problems, Before they started to work on the
problems, the program was explained und it was confirmed that they
understood all instructions. After the baxeline test (Test 1), parucipants in
the three tratming groups received training on 10 problems (2 i Part |
and % in Part 23, They then had ta solve anather 10 problems (Test 2), The
iraining lasted between | and 2 hr; the computenzed tutonals allowed
participants ta work st their own pace. The entire first session (including
Tests | and 2) lasted between | hr 45 min and 3 hr for traming groups and
between 15 and 30 min for the control group. The second session { | week
afier the first session) and the third session (5 weeks after the first session)
served 1o test transfer and stability. Participants in the control group
participated in Sessions | and 2 only. | week apan. In esch of the 1ests,
participants had to solve |0 problems, most of them from Gigerenzer and
Hoffrage (1995). Two of the problems. the sepsis problem and the mam-
mogmphy problem (see Figures | and 2), were used in all four tests and in
the traming. Tests 3 and 4 cach contained one additional “old™ problem.
that i1x, o problem already used in the trmining. All the other problems were
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» The pro ty thate un &
mamf-:rzrw hy will have bréest cancer is 1%, =
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cancer, the probability 1hst she willlest positive I8 80T, |
 [('2 ¥OmAn undergoing & mommography 40es not |
hn;c cancer, the probability that she will test posiuve (s
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Frygure S
tmammaography problem)

e that i, ot used belare, either ina tedt or in the traning The use
of hath eld and new problems allowed us (o examine how well the training
generalizea to problems participants had not seen before. The problems
were connterbalunced ncross sessions, and participants were assigned run-
domly 1o ome of the (our groups.

Sivty-two University of Chicago studems were pad for
their participation i two mstallments. after the first and third sessions.
respectively Six participants who achieved 6% or more correct solutions
in Test | 1baseime) were excloded from the siwdy. Two parmcipants did not
complete the first session We tratned 14 participants in the grid condi-
non, |8 purticipants in the tree conditian, 20 participants in the rule training
condition. and we had 5 participants i the control condition. We had some
Iy of panticipunts over the Soweek period due to heavy siudy loads (end
of spring term) Thie number of panicipants i the second und third sessions
were 12 and 7, respecnsely. in the prid condition. 13 and S in the tree
condition, and 138 and 101 in the rule triuning condition. Four of the live
members of the control group ook purt in the second session,

Poeeticipninils,

Resuln

Figure 9 shows the median percentages ol comrect selutions for
the three rmimng conditions and the control group using the liberal
scoring cnlerton.

Immediate effect. At baseline (Test 1), the median percentage
of Buyesian solutions was 10% in the (requency conditions und (9%
in the rule trauning condition. After training. there was a substantial
improvement in Bayesian reasoning in ¢ach of the three training
condinons. The median perfarmance after rule training increased
o 60%, whereas 1t wus 75% and 90% for the two (requency

Now let's get back to the guestion:

lWnhat is the probamlily that b woman who
has undergane a mammography actually has
breast cancer, If she tests posilive?

The key 1o this Is again the last parl of

the question, IT SHE TESTS POSITIVE. How
many people aut of cur 1,000 cases fesl

positive?
|I‘_nl|1i|kue|

A 50 % 20 frequency grid (gnd size 1.000). Screen shot is from the end of the First phase of training

representation training sessions. In terms of correlational cflect
sizes, which express the immediate effect of a training procedure.
the training effects were very large for cach training, with » > 90
for the representation traming and r > 80 for the rule tramng
{Table ). In contrast. the control group showed only mimmal
improvement.

Transfer. To what extent were participants able to generalize
from the 10 problems they solved during lraining (training prob-
lems) 10 problems with differemt contents (transfer problems)? To
test trupsfer, we compared the solutions or training and transfer
problems, Recall that 2 of the training problems, the mammogra-
phy problem and the sepsis problem. were given in all four rests,
and 1n Tests 3 and 4, participants encountered | additional traming
problem. To the extent that a training method promotes the ability
to generalize a technique—to construct frequency representations
or 1o insert probabilities into a formula—there should be litle
difference between training and transfer problems. A zero value
for the difference between training and transfer problems woukl
mean perfect ransfer; a large positive value of the size of the
difference between waining and transfer problems, that is. 60 10 80
percentage pomts, would mean complete lack of transfer.

The mean percentage of Bayesian solutions was generally al-
most as high for the transfer problems as for the training problems.
With the liberal scoring procedure, the differences between train-
ing problems and transter problems were, on average. 7.2, 3.0 and
—0.8 percentage pomnts for the frequency tree, frequency grid, and
rule raining methods, respectively, und with the strict sconng
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procedure. they were 6.0, 6.3, and 5.3 percentnge poeints, To
summarize, cach ol the three waiming programs led 1o lugh levels
of transfor; that 1s, participanls’ avernge performance in new
problems was almost as good as in old problems. Note that this
result concerns the difference between the number of Buvestn
solutions in training and transfer problems. not the absolute num-
ber of Bayesian solutions in iransfer problems. The abselute num-
ber was consistently larger lor those participants who were Giught
to construct [requency representations (Figure 9).

Stabifiry.  For the rule training, Figure 9 shows that, 5 weeks
alter training, Bayesian reasoning is down to a median of 20%—
almost hack ta where it wis before trmning. The students who
were taught 1o construct frequency rcprcs_cnlulinnm however, show
a different curve. The higher immediate effect of trining is not
lost, and 3 weeks afler training, there is even an mcrease in the
median number of Bayesian anferences i the [requency gnd
condinon, The caleculanion of u correlanonal eflect size That ex-
presses the difference in the long-term training effect (Test 4 —
Test 11 between the combined frequency conditions and the rule
training condition resulted in o medivm w large effect size accord-
ing o Cohen’s (19923 conventions (see Tuble 1, Jong-term differ-
ential lraiming etfect),

However, there is possibly an altemative interpretation of the
long-term siability: the lugh atriton rate toward the end of the
study. If predominuntly weaker punticipants had dropped out, then
the Jong-term results would be upwiurdly biused because they
would mainly refleet the achievement of the stmnger participants,
Is there evidence tor this conjecture” We checked whether the

| Now, iooking at the problem, we see that
10% of the population (walk-in patients)
haue had sepsis. Thal means that 10 out of
our 100 patients actually have sepsis.

A Jrequency tree. Sereen shot s Tram (he heginmng ol the Jirst phase of traming tsepsis probleny,

performunce of participants who completed all Tour tests iffered
from those who did not. For both representation trining vepsions,
the median performance of-those who compleied all wsts was the
same as that of the total group shown n Figure 9. except lor one
pomt—the frequency prid group at Test 2 mutched the median of
the frequency tree group, Thus. the tesults of the representation
training seem tw be uninfluenced by the wirition. For the rule
traming. there was a small difference. which is shown m Figure 9
The dotted line shows the performance of those participants swha
completed all tests, Their performance was slightly above the total
group but showed the sapie pattern of decay. This analvans indi-
cates that the vesults in Figure 2 are not much influcneed by 4
potential difference between those participants who dropped out
and those who completed all four teses,

Dixcussion

Study la showed that ull three truming progriams Gy 1nprove
Bayesian reasoning. The degree of improvement was. as 1 should
be, larges than Gigerenzer and Hoffrage 11993) had reached with-
out Training, thal s, by merely presenting mlormation w natoral
frequencies (6% on nvermge. with a strict scormg procedurer. The

ditference between the representation and the mile trammng wis

most profounced in the temporal stability of what pauticipionts had
learned. The time needed for teaching representations was short,
between | and 2 hr tnot counting the time needed for the tesis),
depending on the speed of the individual pitrticipant
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Now lel's gel back to the question:

What Is the probabiiity that e woman who
has undergone a mammography aclually has
hreast cancer, if she tests positive?

The key Lo this is again the last part of the
question, IF SHE TESTS POSITIDE. How many
peaple out of our 1,000 cases lest positive?

Figure 7 A freguency tree. Screen shot is From the end of the first phase of traming (mammography problem).

Study la, however, had its limits and therefore should be as-
signed the status of a pilot study. First, there was the high anrition
rate. Although the participanty who completed all four tests did not
seem to differ from those who completed only the first two or three
tests, the high atrinon rate may have affected the reliability of the
results in Test 4, Second, the study does not necessarily show thai
the distinction between probabilities and frequencies wis the only
factor that made a difference because the tralning conditions
differed not only in whether frequency or probability formats were
used but also in whether the conditions relied on a graphical aid
Graphics might have been an imponant factor in achieving training
success, Study b addressed the first conjecture, and Study 2
addressed the second.

Stwudy 1b

This study investigated whether the results of Study la could be
replicated in the absence of high autrition rates. To help prevent
high attrition rates, participants were paid only at the end of
Session 3 ruther than i two installments, as i Study 14, Further-
more, Study b addressed the question of whether results are
influenced by performance-contingent payment (parucipants in
Study la were paid a flat sum. independent of their performance).
If a flat fee is paid. participunts might nol be motivated to do their
best (Hertwig & Ortmann, 1999).

Method

Twa ol the three traming programs from Study la were used i this
study’ the frequency tree training and the rule training. German versions

of the progrums were hsed because participants i Study 1b were
German,

Procedure. Two groups of participants took pant in the study. Oae
group was taught with the frequency tree and the other with rule training.
About half of the participants in each group were told at the beginning of
the first sesston that the 20% of participants who achieved the best results
overall would recetve 3 monetary bonus. The lirst session contained 2
baseline test (Test 1), the trmning, and a posttest (Test 2). Testing and
tratming proceeded as in Study [a. The German panticipants took more time
than Jid therr Amenican counterparts in Study la, Observation of partici-
pants suggested that the Germans took the 1ask more seriously than did
their American counterparts. If they could not solve a sk, they did not
easily ywitch 1o the next one, a behavior that was frequently observed in the
AmeTican participants.

To achieve average times comparable 1o those needed in Swdy Ta, that
15, about 2.5 hr for tests and training combined. the number of tasks was
reduced (o seven per test. and the number of training tasks was reduced 0
s1x (two in Part | and four in Part 2). Each test contained two "old"™ tasks,
the sepsis and mammography tasks. that were also used in the traiming and
five “new™ tasks, thai is, tasks not previously used in either test or trasning.
The sccond session (Test 3, about | week alter the first) served 10 assess
transfer and short-term stability. Finally, the third session. which was held.
on average, about 5 weeks after the first, measured long-term stability.

Parncipants.  Fifty-six students at the Free University of Berlin, Ger-
muny, were paid for their paricipation. Unlike In Study la. none of the
participants in Studies b and 2 reached more than 60% solutions at the
tuseling test: thus no participants were excluded in these studies. Twenty-
eight participants were trained in each condition, Foureen participants in
the Trequency tree condition and 13 in the rule mraining condition were 10ld
that they would recetve a monetary bonus 1f their results were among the
best 20%, With the help of the revised payment schedule, there was no
attrition of pariicipants over the course of the study.
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Figure 8 Testing session: The problem text there, the ¢ab problem) is in the upper window, the guestion in
the lower left window, and the instructions in the lower right window. Participants can type in numbers or
formulas consisting of purentheses snd basic arithmetic operators,

Results

Figure 10 shows the performance for both iraining methods
(Figure 10a) and this performance broken down to participants
with and without the performance-contingent bonus (Figures 10b
and 10c¢).

Immediate effect.  Similar to the American participants in
Study la, the German participants showed little or no skills to
solve Bayesian tasks: At Test |, the median number of problems
solved is zero. The immediate traiming effect (Test 2 — Test 1) is
of very similar magnitude as for the American participants in
Study la: Bolh teaching methods improve Bayesian reasoning.
with a median of 64% for the rule training and 86% for the
representation training. This differentsl effect was mote pro-
nounced tor participants who were not told about a bonus than for
those who could expect 10 carn one (compare Figures 10b and
10c). The effect size analysis thal relied on the more conservative
means rather than the mediuns gives a similar picture (Table 2). All
effect sizes measunng the immediate effect were large and were
more pronounced in the frequency Iree condition than in rule
training, in particular when payment was ot performance contin-
gent (Table 2. short-term differential training effect). In no single
test, regardless of whether there was a prospect of a bonus, did the
rule training performance surpass that of the represeniation
traming.

Transfer. To test transfer, the solutions in the two “old"™ tasks
that were used in all 1ests as well as in the fraining were compared
with the results in the “new"” tasks that were used only once.
Transfer was excellent in both training programs. The average
difference between old and new tasks was only 2.4 percentage
points in the [requency tree condition and zero in the rule traimng

condition, with the Tiberal scoring criterion (with the strict scoring
cnterion, the corresponding values were 4.6 and 2.4 percentage
points. respectively). Transfer was not influenced by whether a
bonus could be expected. The difference between old and new
tasks in the bonus and no-bonus subgroups differed from those in
the overall analysis by, at most, 0.9 percentage points.

Stabiliry. Figure 10a shows basically the same pattern shown
in Figure 9, except that the decay in the rule training is not &s
strong—after 5 weeks, performance is down to only 43% com-
pared with 20% (Figure 9). Bul this direct comparison between the
two studies would be misleading because it aggregates over the
bonus and no-bonus groups in Study Ib, which show different
performance patterns (Figures 10b and 10¢). When participants
could not win a bonus, the performance was almost identical with
that in Study la, where participants were also not oftered bonuses.
The decay curve found in the rule training conditon of Stdy la
could be replicated almost perfectly (compare Figure 9, “Fre-
quency Tree” and “Rule Training,” with Figure 10b): After §
weeks, a median of only [4% Bayesian sclutions was found. [f,
however, participants had the prospect of a bonus, there was no
decay in the rule training condition (see Figure 10¢). In contrast,
the results in the frequency Lree condition were not influenced by
whether participants could expect to receive a bonus. For instance.
in the no-bonus group, the performance remained at a median of
86% Bayesian solutions over 5 weeks, from Test 2 to Test 4.

Taken together, the no-bonus group provides an almost exact
replication of the results found in Swudy la. Also, the effect sizes
for the long-term differential training effect, that is, how much
better participants learned in the frequency tree than in the rule
traising condition, are comparable 10 the one found in Study la
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Figure 9. Median percentages of Bayesian solutions obtained in Study 1a (out of 10 possible) for the three
training conditions and the control condition (liberal scoring criterion). For the rule training, values for all
participants and those participants who completed all four tests are shown separately.

(Table 2, long-term differential training effect, “No bonus”). The
combination of a bonus with rule training, however, led to a new
result. We try to explain this result in the next section.

Discussion

Study 1b reduced the attrition rate to zero and replicated the
major findings of Study la: Both the representation and the rule
training led to a substantial and immediate improvement in Bayes-
ian inference, with about the same advantage for representation
training as in Study 1la; both types of training were equally excel-

Table 1

lent in transfer; and the representation training provided tempo-
rally stable improvements, whereas the rule training showed de-
cay. This holds true for both the median solution rates and the
effect sizes based on the means. The new finding was that the rule
training did not show a decay when participants were offered a
bonus (there was none in Study la).

What could be the reason for this bonus effect? We suggest the
following: Many German high school students and most German
university students have heard about Bayes’s formula. At mini-
mum, our participants probably knew where they could find out

Correlational Effect Sizes Expressing Immediate Training Effects Within Conditions and
Differential Training Effects Across Conditions in Study Ia

Liberal scoring

Strict scoring

Training effect Test statistic r Test statistic r df
Immediate (Test 2 — Test 1)
Frequency tree 82.04 .92 84.79 .93 14
Frequency grid 81.56 93 69.44 .92 13
Rule training 44.39 .84 21.39 i 19
Short-term differential (Test 2 — Test 1)
Frequency conditions versus rule training 1.04 15 2.40 33 47
Long-term differential (Test 4 — Test 1)
Frequency condition(s) versus rule training 1.95 40 1.86 .38 20

Note.

The effect sizes for the immediate training effects were calculated from repeated measures ANOVAs

with tests (Test 1, Test 2) as the repeated factors, and differential training effects were calculated from ¢ tests of
group differences using improvement scores (Test 2 — Test 1 and Test 4 — Test 1). The table includes data for
both liberal and strict scoring criteria. For each comparison, it shows test statistic (¥ for immediate effects and
t for differential effects), correlational effect size r, and df.
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Figure 10. Median percentages of Bayesian solutions obtained in Study 1b (out of seven possible) for the two
training conditions (liberal scoring criterion). Combined results (Panel a) and separate results for bonus and
no-bonus subgroups (Panels b and c) are shown.

about the formula: in mathematics school books for Grades 10
to 13 and in statistics textbooks. Thus, some of the participants
who were motivated by the prospect of a bonus may have looked
up Bayes’s rule in the books. To check this hypothesis, we tried to
contact all 13 participants in the rule training who were told about

Table 2

Correlational Effect Sizes Expressing Immediate Training Effects Within Conditions and
Differential Training Effects Across Conditions in Study 1b

Liberal scoring Strict scoring
Training effect Test statistic r Test statistic r df
Immediate (Test 2 ~ Test 1)
Frequency tree 90.34 .88 71.16 .85 27
Bonus 35.61 .86 33.07 85 13
No bonus 54.56 90 35.51 .86 13
Rule training 41.04 .78 39.38 77 27
Bonus 26.24 .83 25.15 .82 12
No bonus 16.00 12 15.34 1 15
Short-term differential (Test 2 — Test 1)
Frequency tree versus rule training 1.65 22 1.63 22 54
Bonus 0.70 .14 0.83 .16 25
No bonus 1.57 29 1.39 .26 27
Long-term differential (Test 4 — Test 1)
Frequency tree versus rule training 1.98 .26 2.58 .33 54
Bonus 0.41 .08 0.62 12 25
No bonus 247 43 3.20 52 27

Note. The effect sizes for the immediate training effects were calculated from repeated measures ANOVAs
with tests (Test 1, Test 2) as the repeated factors, and differential training effects were calculated from ¢ tests of
group differences using improvement scores (Test 2 — Test 1 and Test 4 — Test 1). For each comparison, the
test statistic (F for immediate effects and ¢ for differential effects), correlational effect size r, and df are shown.
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the bonus. Because of address changes and other reasons, we were
able to reach only 7 participants. Of these, only 1, a law student,
reported that he had learned the formula during the training and
remembered it well over the whole period without thinking much
about it. The other 6 conceded that they had recognized the
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formula from some statistics course and had thought abour it
before the retests. Two of the participants said that they had looked
it up in statistics textbooks, and | admitted to having made a copy
of the formula from the training session and practicing with that
copy at home. Thus, it scems that additional effort is a plausible
explanation for the better results of those participants in the rule
tramning condition who could expect 1o receive a bonus.

In contrast, there was no way that participants could learn about
the frequency tree because German mathematics or statistics text-
books do not introduce that kind of representation. This interpre-
tation suggests that financial incentives can play an important roke
in statistical training, in leading to additional efforis to look up the
formula outside the laboratory. Nobody denies that students can, in
principle, learn 1o apply Bayes’s rule successfully (otherwise, there
would be no experts in statistics), and this study has shown that
monetary incentives help. Frequency representations, however,
still lead to slightly better (and cheaper) results without a monetary
motivation,

Study 2

Study 1b successfully replicated the difference in leaming effect
between a training program using a frequency representation and
one relying on the use of rules. However, the results of both
Studies 1a and 1b still left open an alternative explanation for the
superiority of the representation training over the rule training:
Perhaps it was not the difference between frequency and proba-
bility formats, but rather whether graphical aids were used. that
was responsible for the difference in training results. The main aim
of Study 2 was to test this objection. Furthermore, this study
examined whether the stability over time found for the represen-
tation training in the previous studies holds for a longer period of
time—15 weeks rather than 5 weeks. To aveid the potential
influence of looking up Bayes’s rule outside the laboratory, no
bonus was offered in this study. As in Study 1b, participants were
paid at the end of Session 3.

A graphical aid, the tree, was used for both the frequency and
the probability formats. If the graphical aid is the decisive factor in
Bayesian inference training, then there should be no systematic
difference in results between the probability and frequency condi-
tions. The tree conditions were compared against the standard rule
training used in the previous studies.

Method

Two of the three training metbods used in this study, the rule traimng
and the frequency tree training, were identical to the ones in Study 1b, We
refer to the third traimng method as the “probability tree” training.

Probability tree.  In a probability tree (Figure | 1), the top node con-
tains the value 1, that is, the probability that the respective hypothesis is
true or not true. In the specific example thar uses the mammography task
(see carlier example), this is the probability that a woman who has
undergone a mammography does or does not have breast cancer, The two
middle nodes show the base-rate probabilities of breast cancer (p = 01}
and its complement, no breast cancer (p = .99). The four podes at the
lowest level split up the base-rate probabilities according to the diagnosuc
information—in our case, the result of the mammography. Only the values
in the two shaded nodes are needed 10 calculate the pusterior probability,
pleancer | positive lest), because p(cancer | positive test) = picancer &
positive test)/p(positive test). where p(cancer & positive fest) is represented
by the left black node, and the sum of both black nodes gives p(positive

E=— Probabilil]Tree ="

Probability tree as used in Stwdy 2. Screen shot is from the
first phase of maning (mammography task).

Figure 11

test). Thus, calculution in the probability tree is identical o that m the
frequancy tree except that the value n the top node 15 always |

Procedire.  Three groups of partcipants took part in the study. One
group worked with the frequency tree. the secand with the probability ree.
and the third with Bayes's formuia. Participants used German versions of
the tasks from Stedy Lo and completed three sessions The first sessuon
conttined a baseline test (Test 1), the training. and 4 postiest (Test 2),
Testing and training proceeded as in Study Th. The second session (Test 3,
aboul | week after the first) served to assess Iransfer and shor-term
stability, Finally, the third session, which was held sbout |5 weeks after the
first. measured long-term stability, The nverage mlervals between training
and Test 4 for the Irequency Iree, the probability tree. and the rule tramning
condition were 15.4 weeks. 14,8 weeks, and 148 weeks, respectively. This
profonged time interval allowed us 10 test to what degree the excellem
stubility observed in Studies L and b, 5 weeks after truining. sill existed
at the later time.

Participants.  Seventy-iwo students at the Umversity of Munich, Ger-
many, were paid for their participavon. Twenty-four participants were
trained in each of the three conditivns, The data for one participant in the
rule g condition were lost due 10 4 computer breakdown, There wis
no atrrition in the firsl two sessions, but there was atirition in the third
session (Test 4), probably due tu the fong tine interval (14 weeks) between
Sessions 2 and 3. The number of pamicipanis tn Test 4 wass = 21.n = 21,
and n = 18 in the frequency tree, probubility tree, and rule trainmg
conditions, respectively
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Figure 12, Median percentages of Bayesian solutions obtained in Study 2
(out of seven possible) for the three training conditions (liberal scoring
criterion).

Results

The same two scoring criteria as in Studies 1a and 1b were used.
Figure 12 shows the median percentages of Bayesian solutions, for
the liberal scoring criterion. Again, results for liberal and strict
criterion differed in quantity but not in quality.

Immediate effect. As in the previous studies, the baseline test

Table 3
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(Test 1) indicated that participants had few skills for solving
Bayesian tasks. Before the training, the median percentage of
Bayesian solutions over all participants was 14%. The immediate
training effect was strong for all three training programs and again
yielded large effect sizes that were comparable to those obtained in
the previous studies (see Table 3).

Transfer. As in the previous studies, transfer was excellent in
all three training programs. On average, using the liberal scoring
criterion, the difference between old and new tasks was 0.6 per-
centage points in the frequency tree, 4.9 in the probability tree,
and 4.8 in the rule training condition (using the strict scoring
criterion, the corresponding values were 2.1, 3.8, and 1.2 percent-
age points, respectively).

Stability. In the previous studies, the effect of the representa-
tion training was stable over a 5-week period. In rule training, by
contrast, the effect faded away over time (with the notable excep-
tion of the bonus group in Study 1b). Can participants still main-
tain their representation skills 15 weeks after training? Do we still
obtain the difference between the rule and representation training
as in Studies 1a and 1b? Figure 12 shows that, consistent with the
results in the previous studies, no decay occurred in the group that
received representation training (frequency tree). Here, the imme-
diate training effect of a median of 93% Bayesian solutions re-
mained stable over the whole period of 15 weeks. In fact, it even
increased to 100% Bayesian solutions at Test 4. In contrast, the
rule training group began high, at a median of 86% Bayesian
solutions, and ended up at a median of 50% after 15 weeks. The
probability tree training shows a similar pattern of results as the
rule training. There is some decay from Test 2 to Test 3 and a more
pronounced decay from there to Test 4, with a final level of 57%
Bayesian solutions. A comparison of the long-term improvement
scores (Test 4 — Test 1) between the frequency tree condition on
the one hand and the probability tree and rule training conditions
on the other hand again yields medium- to large-sized effects. The
difference between the two probability conditions is, by contrast,

Correlational Effect Sizes Expressing Immediate Training Effects Within Conditions and
Differential Training Effects Across Conditions in Study 2

Liberal scoring

Strict scoring

Training effect Test statistic r Test statistic r df
Immediate (Test 2 — Test 1)
Frequency tree 143.98 93 94.00 .90 23
Rule training 50.98 .84 63.42 .86 22
Probability tree 115.00 91 187.29 94 23
Short-term differential (Test 2 — Test 1)
Frequency tree versus rule training 1.88 27 0.74 11 45
Frequency tree versus probability tree 1.05 .15 0 0 46
Probability tree versus rule training 1.00 15 0.85 .13 45
Long-term differential (Test 4 ~ Test 1)
Frequency tree versus rule training 3.11 .46 2.69 40 37
Frequency tree versus probability tree 298 43 2.02 .30 40
Probability tree versus rule training 0.07 .01 0.77 13 37

Note.

The effect sizes for the immediate training effects were calculated from repeated measures ANOVAs

with tests (Test 1, Test 2) as the repeated factors, and differential training effects were calculated from ¢ tests of
group differences using improvement scores (Test 2 — Test 1 and Test 4 — Test 1). For each comparison, it
shows test statistic (F for immediate effects and ¢ for differential effects), correlational effect size r, and df.
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small, especially when the liberal scoring criterion is used (Figure
12; see Table 3, long-term differential effect).*

Discussion

Studies 1a and 1b left open a possible alternative explanation for
the superior results in the representation training as compared with
the rule training. The former used graphical aids, whereas the latter
did not, and therefore the graphical aid might have made the
difference. In Study 2, both a frequentistic and a probabilistic
condition used the same graphical aid, a tree structure. The imme-
diate training results were very high in both tree conditions, but
they differed markedly in the stability of the training success over
time. The frequency tree training enabled participants to retain
what they had learned more than 3 months before, whereas the
effect of the probability tree training decayed over time, to a
median of 57%.

How much could the probability training gain by using a graph-
ical aid? Figure 12 shows that performance was slightly better
after 15 weeks, but overall, there is little, if any, difference. This
holds despite the rule training group having to learn a more
complicated formula (Bayes's rule for probabilities) than the prob-
ability tree group. The similar performance in the two probability
training programs indicates that the important question is not
whether a graphical aid should be used in teaching statistical
literacy but what is a proper representation for a graphical aid.’ It
also indicates that the superior effect of natural frequencies is not
due solely to computational simplicity, which is the same for
probability trees as for frequency trees except that the decimal
point is moved to the left. The results in Study 2 are consistent with
Gigerenzer and Hoffrage’s (1995) conclusion that natural frequen-
cies constitute a proper representation of uncertainties.

Conclusion

Gigerenzer and Hoffrage (1995) have stressed the importance of
studying cognitive algorithms in tandem with the information
format for which they are designed. The thesis is that humans and
animals more easily encode information about uncertain environ-
ments in terms of natural frequencies compared with probabilities,
and one can show that Bayesian computations are simpler when
information is represented in natural frequencies. Both the fre-
quency grid and the frequency tree are realizations of natural
sampling of frequencies.

We applied Gigerenzer and Hoffrage’s work to an unresolved
problem: how to design a method for teaching Bayesian reasoning
that is built on psychological principles and can overcome the lack
of success reported in previous studies. The central idea is to teach
people to represent information in a way that is tuned to their
cognitive algorithms. Whether such cognitive algorithms are the
direct result of evolution or whether they rely on evolved mental
architectures and are shaped to a large extent during ontogenesis
by learning processes does not matter much for our argument. For
instance, Sedlmeier (1999) showed that an associative learning
model also arrives at the prediction that Bayesian algorithms
crucially depend on information format. Our research emphasizes
the role of the information representation at encoding. If informa-
tion is encoded in terms of natural frequencies, probability judg-
ments can be quite exact (Sedlmeier, 1999, pp. 161-163).

This psychological approach was contrasted with the traditional
approach to the teaching of statistical reasoning, which emphasizes
how to insert the right numbers into the right rule. Similar to prior
training attempts on the impact of sample size (e.g., Fong &
Nisbett, 1991), the rule training method showed a substantial
short-term increase in performance, and relative to this increase, an
excellent transfer. After several weeks, however, Bayesian reason-
ing had undergone the well-known decay function. When partic-
ipants were taught representations instead of rules, the initial
training effect was noticeably higher, transfer was equally good,
and there was no loss of performance after 15 weeks.

Let us reflect on the larger context in which the present ap-
proach to teaching stands. First, there is an ecological perspective:
Cognitive algorithms (or rules) are adapted to specific information
formats in the environment. Specifically, the external representa-
tion of information can “perform” part of the computations. Sec-
ond, there is the evolutionary distinction between the past envi-
ronment to which the cognitive processes of an organism are
adapted and the present environment in which an organism lives
(e.g., Buss, Haselton, Shackelford, Bleske, & Wakefield, 1998;
Cummins, 1998). When environments change, such as by the
invention of new forms for the representation of information such
as probabilities, cognitive processes may no longer function as
well as before, and “illusions” can be a consequence. As an
example from vision, consider color constancy, an impressive
adaptation of the human perceptual system. It allows people to see
the same color under changing illuminations: under the bluish light
of day as well as the reddish light of the setting sun. Color
constancy, however, fails under certain artificial lights such as
sodium or mercury vapor lamps, which were not present in the
environment when mammals first evolved (Shepard, 1992). The
same type of argument can be made for statistical reasoning
(Gigerenzer, 1998), where natural frequencies correspond to the
format of information a foraging organism would have encoun-
tered before the invention of books and statistics, and probabilities
and percentages correspond to an information environment that
has been changed by the invention of mathematical probability.

Compared with the earlier emphasis on demonstrating cognitive
biases in statistical reasoning, or so-called “inevitable” illusions
(e.g., Piattelli-Palmarini, 1994), the ecological perspective can

“# There is one notable exception from the finding that the results based
on the strict and liberal scoring criteria differ only in quantity, in Study 2.
According to the strict scoring criterion, there is a relatively large differ-
ence in the median percentages at Test 4 (36 percentage points) between
rule training and probability tree conditions, which is much smaller when
expressed in means (6 percentage points) and which is not found when
applying the liberal criterion (see Figure 12 and the Appendix). The large
difference is, however, due in part to the coarse step size that determines
the possible median percentage values. Recall that with eight possible
values (0 to 7 problems solved) a difference of one problem solved
amounts to a difference of 14.3 percentage points.

5 An alternative way to disentangle the possible influence of a graphical
aid from that of the information representation (frequentistic vs. probabi-
listic) would have been to dispense with graphical aids in both represen-
tations (rather than to use them in both representations, as in Study 2). We
did not proceed with this route because it has already been shown by
Gigerenzer and Hoffrage (1995) that frequency representations yield so-
lution rates about three times as high (about 50% correct solutions) as
probability representations—both without graphical aids.
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actually advise us how to help people understand statistical infor-
mation. Here, the external representation of numerical information,
and the internal translation of one representation into another, can
be a major tool for helping people to attain insight. This is not to
say that frequency representations are the only tool. Study 1b, for
instance, indicated that offering monetary incentives can motivate
students to make additional effort and can enable them to perform
about as well as those who had a representation training.

We conclude with some open questions and possible extensions
of the present work. First, we have dealt with only an elementary
form of Bayesian inference, and we do not know how these results
generalize to situations in which hypotheses and data are not
binary but multivalued or continuous. Second, we have not dealt
with situations in which there is more than one piece of diagnostic
information, such as two medical tests in sequence. Multiple
pieces of information can be reduced to the sequential application
of two frequency representations, and Krauss, Martignon, and
Hoffrage (1999) have shown that the effect of natural frequencies
remains as strong with two pieces of information as it is with one.
This result suggests extending teaching representations to situa-
tions with multiple pieces of information. Third, an extension of
the training program would be to teach Bayesian shortcuts, as
described in Gigerenzer and Hoffrage (1995). For instance, when
a disease is rare (low base rate) and can be easily detected (high hit
rate) and false positives are numerous, as compared with true
positives, then the ratio between base rate and false-alarm rate is a
good approximation of the Bayesian estimate. For instance, as-
sume that only 2 out of 10,000 men have HIV; the hit rate of an
ELISA test is very high; and there are about 20 false positives
among those 9,998 men who do not have the virus. The probability
that a man who tests positive actually has the virus can be approx-
imated by simply dividing the base-rate frequency (2) by the
false-alarm frequency (20); this shortcut results in a value of 1
in 10. A final extension of the training program would be to teach
participants to understand and judge the assumptions for the ap-
plicability of Bayes’s rule (e.g., Earman, 1992) as well as other,
competing statistical methods for inference.

Tutorial programs could play a useful role in education for
mathematical and statistical literacy and in overcoming innu-
meracy (Paulos, 1988; Sedlmeier, 1999, 2000). Because the rep-
resentation training lasts only 1-2 hr, it can be used, for instance,
in high school curricula to teach young people how to evaluate the
results of pregnancy, HIV, or drug tests. Similarly, it can be used
to teach both patients and physicians to estimate the chances of
actually having breast cancer after a positive mammogram, and the
like. Computerized programs have been proven to attract the
attention of young and old alike, and we have observed in our
participants a high degree of involvement and desire to succeed.
The teaching of statistical literacy can take advantage of human
psychology.
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TEACHING BAYESIAN REASONING

Appendix

Median and Mean Percentages, and Standard Deviations and Group Sizes, for All
Tests in Studies la, 1b, and 2

Liberal scoring Strict scoring
Measure Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4
Study 1a
Frequency tree
Median 10 90 90 90 0 80 90 90
M 18 80 77 80 10 73 75 74
SD 23 20 30 26 16 25 32 31
n 15 15 13 5 15 15 13 5
Frequency grid
Median 10 75 70 100 5 70 60 90
M 16 7 72 70 10 64 62 63
SD 15 23 18 42 14 23 23 45
n 14 14 12 7 14 14 12 7
Rule training
Median 0 60 30 20 0 35 20 15
M 6 56 48 41 4 41 42 36
SD 11 37 39 38 8 38 43 39
n 20 20 15 10 20 20 15 10
Control
Median 0 5 0 5
M 10 18 8 18
SD 22 28 18 29
n b 4 b 4
Study la, complete data sets
Frequency tree (n = §)
Median 10 90 90 90 0 80 90 90
M 12 86 86 80 0 76 86 74
SD 13 9 21 26 0 6 15 31
Frequency grid (n = 7)
Median 10 90 70 100 0 70 70 90
M 16 79 73 70 10 70 66 63
SD 18 25 22 42 19 22 28 45
Rule training (n = 10)
Median 0 65 45 20 0 40 40 15
M 4 55 53 41 4 42 46 36
SD 7 33 37 38 7 36 42 39
Study 1b
Frequency tree
Median 0 86 79 86 0 71 71 86
M 10 7 67 69 4 61 60 66
SD 14 32 37 37 10 37 36 40
n 28 28 28 28 28 28 28 28
Rule training
Median 0 64 57 43 0 50 57 43
M 10 55 47 47 5 46 42 40
SD 17 38 39 41 14 38 39 39
n 28 28 28 28 28 28 28 28
Bonus
Frequency tree
Median 0 79 71 86 0 57 71 86
M 9 68 58 65 2 58 55 60
SD 14 34 41 39 8 38 38 43
n 14 14 14 14 14 14 14 14
Rule training
Median 0 71 71 71 0 71 57 57
M 13 63 58 63 8 53 56 56
SD 18 36 37 38 17 36 36 38
n - 13 13 13 13 13 13 13 13

(Appendix continues)
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Appendix (continued)

Liberal scoring Strict scoring

Measure Test 1 Test 2 Test 3 Test 4 Test 1 Test 2 Test 3 Test 4

Study 1b (continued)

No bonus
Frequency tree
Median 0 86 86 86 0 71 71 86
M 11 75 76 73 6 63 64 71
SD 15 32 31 36 12 37 34 38
n 14 14 14 14 14 14 14 14
Rule training
Median 0 57 14 14 0 29 0 0
M 7 49 38 34 3 41 30 27
SD 15 40 39 39 11 41 38 35
n 15 15 15 15 15 15 15 15
Study 2
Frequency tree
Median 14 93 93 100 0 86 86 86
M 17 85 85 85 8 76 76 76
SD 26 21 22 24 25 25 30 34
n 24 24 24 21 24 24 24 21
Probability tree
Median 14 86 79 57 0 86 71 57
M 17 77 73 49 5 73 68 47
SD 15 24 30 41 13 23 34 42
n 24 24 24 21 24 24 24 21
Rule training
Median 14 86 86 50 0 86 86 21
M 18 70 70 48 9 69 66 41
SD 22 31 35 39 20 32 40 44
n 23 23 23 18 23 23 23 18

Note. The appendix shows median and mean percentages of Bayesian solutions, as well as standard deviations
(SD) and group sizes (n) for all Tests in Studies 1a, 1b, and 2. The results are shown according to both a liberal
and a strict scoring criterion (see text). For Study la, the data of those participants who took part in all three
sessions are shown separately (Study 1a, complete data set). For study 1b, data are also shown separately for
those participants who had the chance to eam a monetary bonus (“Bonus”) and those who did not (“No bonus”).
Values for medians, means, and standard deviations are percentages rounded to the next digit.
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