ABSTRACT: Hippocampal lesions tend to facilitate two-way active avoidance (2WAA) conditioning, where rats learn to cross to the opposite side of a conditioning chamber to avoid a tone-signaled footshock. This classical finding has been suggested to reflect that hippocampus-dependent place/context memory inhibits 2WAA (a crossing response to the opposite side is inhibited by the memory that this is the place where a shock was received on the previous trial). However, more recent research suggests other aspects of hippocampal function that may support 2WAA learning. More specifically, the ventral hippocampus has been shown to contribute to behavioral responses to aversive stimuli and to positively modulate the meso-accumbens dopamine system, whose activation has been implicated in 2WAA learning. Permanent hippocampal lesions may not reveal these contributions because, following complete and permanent loss of hippocampal output, other brain regions may mediate these processes or because deficits could be masked by lesion-induced extra-hippocampal changes, including an upregulation of accumbal dopamine transmission. Here, we re-examined the hippocampal role in 2WAA learning in Wistar rats, using permanent NMDA-induced neurotoxic lesions and temporary functional inhibition by muscimol or tetrodotoxin (TTX) infusion. Complete hippocampal lesions tended to facilitate 2WAA learning, whereas ventral (VH) or dorsal hippocampal (DH) lesions had no effect. In contrast, VH or DH muscimol or TTX infusions impaired 2WAA learning. Ventral infusions caused an immediate impairment, whereas after dorsal infusions rats showed intact 2WAA learning for 40–50 min, before a marked deficit emerged. These data show that functional inhibition of ventral hippocampus disrupts 2WAA learning, while the delayed impairment following dorsal infusions may reflect the time required for drug diffusion to ventral hippocampus. Overall, using temporary functional inhibition, our study shows that the ventral hippocampus contributes to 2WAA learning. Permanent lesions may not reveal these contributions due to functional compensation and extra-hippocampal lesion effects. © 2015 Wiley Periodicals, Inc.

KEY WORDS: active avoidance learning; excitotoxic hippocampal lesion; temporary deactivation; tetrodotoxin (TTX); muscimol

INTRODUCTION

A classical finding from hippocampal lesion studies is that damage to the hippocampal system facilitates two-way active avoidance (2WAA) conditioning in rats (Olton and Isaacson, 1968; O’Keefe and Nadel, 1978; Gray and McNaughton, 1983; Tonkiss et al., 1990; Weiner et al., 1998; Pouzet et al., 1999; Guillazo-Blanch et al., 2002). In 2WAA conditioning, rats are trained to avoid a footshock by crossing to the opposite side of a conditioning chamber in response to a conditioned stimulus (CS) predicting the footshock. Facilitation of 2WAA conditioning by hippocampal damage has been suggested to reflect the disruption of place or contextual memory, a well-established consequence of hippocampal lesions (O’Keefe and Nadel, 1978; Morris et al., 1982, 1990; Anagnostaras et al., 2001; Bannerman et al., 2004; Nadel and Hardt, 2004; Bast, 2007; Bast et al., 2009; Rudy, 2009). More specifically, it was proposed that 2WAA requires the rat to overcome fear of a place or context to return to an area of the conditioning chamber where it has just received a footshock. Hippocampal damage, disrupting place or context memory, might reduce such fear and thereby facilitates 2WAA (Olton and Isaacson, 1968; O’Keefe and Nadel, 1978; Guillazo-Blanch et al., 2002). Indeed, hippocampal lesions especially disrupt the rapid, one-trial, place and contextual learning required to remember the place or context of events, such as a shock, experienced on a specific trial (Morris et al., 1990; Wiltgen et al., 2006; Bast et al., 2009).

However, while hippocampus-dependent one-trial place or context memory may inhibit 2WAA, other aspects of hippocampal function might be expected to support such behavior. First, the hippocampus, especially the ventral part, supports behavioral responses and fear conditioning to aversive stimuli in a variety of paradigms (Bast et al., 2001a,b; Kjelstrup et al., 2002; Bannerman et al., 2004; Pentkowski et al., 2006; Bast, 2007, 2011; Fanselow and Dong, 2010). Second, activity of the hippocampus, especially the ventral part, positively modulates midbrain dopamine projections to the forebrain, including nucleus accumbens (Bast, 2007, 2011; Grace et al., 2007; Taepavaraprak et al., 2008), and stimulation of midbrain dopamine projections and accumbens dopamine

© 2015 WILEY PERIODICALS, INC.
transmission have been implicated in the facilitation of 2WAA conditioning (Wadenberg and Hicks, 1999; Smith et al., 2007; Shumake et al., 2010; Boschen et al., 2011; Darvas et al., 2011; Ilango et al., 2012; Dombrowski et al., 2013).

Hippocampal lesions may fail to reveal such hippocampal contributions to 2WAA conditioning due to functional compensation and secondary changes in other brain regions. First, other brain structures implicated in aversively motivated responses (Maren and Quirk, 2004) or in the modulation of the mesoaccumbens dopamine system (Sesack and Grace, 2010) may compensate for the permanent loss of hippocampal contributions. Second, there is evidence that hippocampal lesions result in secondary changes in the nucleus accumbens that facilitate local dopamine transmission, including dopamine receptor hypersensitivity (Mittleman et al., 1993) and enhanced dopamine transmission (Lipska et al., 1992; Wilkinson et al., 1993).

Compared to permanent hippocampal lesions, temporary functional inactivation of the hippocampus may afford less opportunity for compensatory adaptations and cause less secondary changes in efferent sites (Lomber, 1999). Therefore, temporary inactivation may reveal some aspects of hippocampal function that have eluded lesion studies. In support of this possibility, we have successfully used functional inactivation to reveal a previously undiscovered hippocampal role in certain sensorimotor processes (consistent with functional links to prefrontal and subcortical sites involved in these processes). More specifically, temporary hippocampal inactivation by the GABA-A receptor agonist muscimol or the sodium channel blocker tetrodotoxin (TTX) reduces both locomotor activity and prepulse inhibition, whereas hippocampal lesions do either not affect or, in the case of locomotor activity, even tend to increase these measures (Bast et al., 2001b; Zhang et al., 2002; Bast and Feldon, 2003).

In the present study, we examined the contribution of the hippocampus to 2WAA conditioning in rats, using temporary functional inactivation by bilateral infusions of the GABA-A receptor agonist muscimol or the sodium channel blocker TTX into the dorsal or ventral hippocampus. For comparison, we also examined the effect of NMDA-induced neurotoxic lesions to the dorsal, ventral, or complete hippocampus. We predicted that temporary hippocampal inactivation, especially if targeting the ventral part, would impair 2WAA conditioning, whereas hippocampal lesions would, if at all, facilitate conditioning.

Materials and Methods

Subjects

The subjects were 108 male Wistar rats (Zur:WIST[Han/Ibm], Research Unit Schwerzenbach, Schwerzenbach, Switzerland), weighing about 250 g and aged 2 to 2.5 months at the time of surgery. Forty-seven rats were allocated to four groups: 10 rats received bilateral lesions of the dorsal hippocampus, 10 received bilateral lesions of the ventral hippocampus, 10 received bilateral lesions of the complete hippocampus, 8 rats receiving sham surgery, and 9 unoperated rats served as controls. The procedure used to make the lesions was the same as described by Zhang et al (2004). For each of the lesion groups, a small craniotomy was made above the injection sites on each side of the brain (about 2 mm × 2 mm for the ventral hippocampal lesions, and 4 mm × 4 mm for the dorsal or complete hippocampal (CH) lesions). Rats received multiple injections of N-methyl-D-aspartate (NMDA, in volumes between 0.025 and 0.10 μl per injection) dissolved in 0.1M phosphate-buffered saline (PBS, pH 7.4) at a concentration of 10 mg/ml. Rats in the CH lesion group received injections at 36 sites, rats in the dorsal hippocampal (DH) lesion group at 22 sites, and rats in the ventral hippocampal (VH) lesion group at 14 sites (Table 1). The injection cannula was left in place at each injection site for 60 s before being retracted. Rats in the sham surgery group were placed in the frame, had the skull exposed, and were given microinjections of PBS, as a vehicle control (four rats received PBS injections at the 22 sites used in the DH lesion group and the other four at the 14 sites used in the ventral hippocampal lesion group). The scalps were then stitched. After surgery, all rats were allowed at least 2 weeks to recover before the beginning of the 2WAA experiment.

Implantation of guide cannulae for intrahippocampal infusions

Sixty-one rats were used for the hippocampal infusion experiments. Rats were placed in the stereotaxic frame and a
TABLE 1.

Stereotaxic Coordinates and Injection Volumes Used for NMDA Injections (10 mg/ml) to Induce Neurotoxic Lesions to the Complete, Dorsal, or Ventral Hippocampus

<table>
<thead>
<tr>
<th>AP</th>
<th>ML</th>
<th>DV</th>
<th>Vol (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete hippocampal lesions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2.2</td>
<td>±1.2</td>
<td>-3.3</td>
<td>0.075</td>
</tr>
<tr>
<td>-2.7</td>
<td>±1.9</td>
<td>-3.3</td>
<td>0.075</td>
</tr>
<tr>
<td>-3.0</td>
<td>±1.4</td>
<td>-2.6</td>
<td>0.050</td>
</tr>
<tr>
<td>-3.0</td>
<td>±1.4</td>
<td>-3.3</td>
<td>0.050</td>
</tr>
<tr>
<td>-3.0</td>
<td>±3.0</td>
<td>-3.1</td>
<td>0.100</td>
</tr>
<tr>
<td>-3.5</td>
<td>±3.5</td>
<td>-3.1</td>
<td>0.075</td>
</tr>
<tr>
<td>-4.3</td>
<td>±2.8</td>
<td>-3.3</td>
<td>0.050</td>
</tr>
<tr>
<td>-4.3</td>
<td>±2.8</td>
<td>-2.3</td>
<td>0.050</td>
</tr>
<tr>
<td>-4.3</td>
<td>±2.8</td>
<td>-5.0</td>
<td>0.025</td>
</tr>
<tr>
<td>-4.3</td>
<td>±2.8</td>
<td>-4.0</td>
<td>0.050</td>
</tr>
<tr>
<td>-4.3</td>
<td>±2.8</td>
<td>-3.0</td>
<td>0.050</td>
</tr>
<tr>
<td>-4.8</td>
<td>±4.8</td>
<td>-6.0</td>
<td>0.075</td>
</tr>
<tr>
<td>-4.8</td>
<td>±4.8</td>
<td>-5.0</td>
<td>0.050</td>
</tr>
<tr>
<td>-5.1</td>
<td>±4.2</td>
<td>-4.5</td>
<td>0.050</td>
</tr>
<tr>
<td>-5.1</td>
<td>±4.2</td>
<td>-6.5</td>
<td>0.100</td>
</tr>
<tr>
<td>-5.1</td>
<td>±5.0</td>
<td>-5.5</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Dorsal Hippocampal Lesions

<table>
<thead>
<tr>
<th>AP</th>
<th>ML</th>
<th>DV</th>
<th>Vol (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.4</td>
<td>±1.0</td>
<td>-3.3</td>
<td>0.075</td>
</tr>
<tr>
<td>-2.8</td>
<td>±1.5</td>
<td>-3.3</td>
<td>0.075</td>
</tr>
<tr>
<td>-3.2</td>
<td>±1.4</td>
<td>-3.3</td>
<td>0.050</td>
</tr>
<tr>
<td>-3.2</td>
<td>±1.4</td>
<td>-2.6</td>
<td>0.050</td>
</tr>
<tr>
<td>-3.2</td>
<td>±3.0</td>
<td>-3.1</td>
<td>0.100</td>
</tr>
<tr>
<td>-3.6</td>
<td>±3.5</td>
<td>-3.1</td>
<td>0.075</td>
</tr>
<tr>
<td>-4.4</td>
<td>±2.8</td>
<td>-3.3</td>
<td>0.050</td>
</tr>
<tr>
<td>-4.4</td>
<td>±2.8</td>
<td>-2.3</td>
<td>0.050</td>
</tr>
<tr>
<td>-4.4</td>
<td>±4.0</td>
<td>-3.3</td>
<td>0.050</td>
</tr>
<tr>
<td>-4.4</td>
<td>±4.0</td>
<td>-2.3</td>
<td>0.050</td>
</tr>
<tr>
<td>-5.4</td>
<td>±4.1</td>
<td>-3.5</td>
<td>0.250</td>
</tr>
</tbody>
</table>

Ventral Hippocampal Lesions

<table>
<thead>
<tr>
<th>AP</th>
<th>ML</th>
<th>DV</th>
<th>Vol (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.4</td>
<td>±4.0</td>
<td>-4.0</td>
<td>0.025</td>
</tr>
<tr>
<td>-4.9</td>
<td>±4.8</td>
<td>-6.2</td>
<td>0.075</td>
</tr>
<tr>
<td>-4.9</td>
<td>±4.8</td>
<td>-5.2</td>
<td>0.050</td>
</tr>
<tr>
<td>-5.2</td>
<td>±4.2</td>
<td>-7.5</td>
<td>0.100</td>
</tr>
<tr>
<td>-5.2</td>
<td>±4.2</td>
<td>-4.8</td>
<td>0.075</td>
</tr>
<tr>
<td>-5.5</td>
<td>±5.0</td>
<td>-6.0</td>
<td>0.100</td>
</tr>
<tr>
<td>-5.5</td>
<td>±5.0</td>
<td>-4.9</td>
<td>0.075</td>
</tr>
</tbody>
</table>

Anterior-posterior (AP), medio-lateral (ML) and dorsoventral (DV) coordinates are in mm. AP and ML were measured with respect to bregma, and DV relative to dura.

small hole (1.5 mm in diameter) was drilled on each side of the skull to reveal the cortex overlying the hippocampus. Stainless steel guide cannulae (26 gauge, 9 mm or 7 mm for ventral or dorsal hippocampus, respectively) in a Perspex holder (custom made) were implanted bilaterally into the brain aiming at the ventral (−5.2 mm posterior and ±5.0 mm lateral to bregma, and −5.0 mm ventral to dura) or dorsal (−3.0 mm posterior and ±1.5 mm lateral to bregma, and −2.5 mm ventral to dura) hippocampus, using the same coordinates as in previous studies (Bast et al., 2001b; Zhang et al., 2002, 2014; Bast and Feldon, 2003). The guide cannulae were fixed to the skull, using dental cement (Harvard Cement, Hoppegarten, Germany) and three anchoring skull screws. Stainless steel stylets (34 gauge) extending 0.5 mm beyond the tips of the guide cannulae were placed inside the guide cannulae to prevent occlusion. After surgery, rats were allowed to recover for five days before the beginning of the 2WAA experiments. During this time, the experimenter conducted daily health checks, gently habituated the rats to the handling required for the infusions, and replaced any missing stylet.

Intracerebral Infusions

The rats were manually restrained, the stylets removed carefully, and infusion cannulae (34 gauge, stainless steel) were inserted into the brain through the previously implanted guide cannulae. The tips of the infusion cannula protruded 1.5 mm beyond the tip of the guide cannulae into the ventral or dorsal hippocampus, resulting in final dorso-ventral coordinates of 6.5 and 4.0 mm below dura in the ventral and dorsal hippocampus, respectively, as in our previous studies (Bast et al., 2001b; Zhang et al., 2002, 2014; Bast and Feldon, 2003). The infusion cannulae were connected to 10-μl Hamilton microsyringes by flexible PEEK tubing. The syringes were mounted on a Kds microinfusion pump. All rats were infused bilaterally and the infusion volume was 0.5 μl/side, delivered at the rate of 0.5 μl/min. Afterwards, the infusion cannulae were kept in place for an additional 60 s to allow for tissue absorption of the infusion bolus before being replaced by the stylets. As in our previous studies (Bast et al., 2001b; Zhang et al., 2002), muscimol (1 μg/0.5 μl/side) was infused immediately and TTX (10 ng/0.5 ml/side) 20 min before behavioral testing. Accordingly, half of the rats infused with vehicle, i.e. 0.9% saline (0.5 μl/side), received infusion immediately before the behavioral sessions, the other half 20 min before the behavioral sessions.

Drugs

Muscimol [C₄H₆N₂O₂(1/2 H₂O); Tocris, Bristol, UK] was dissolved in 0.9% saline at a concentration of 2 μg/μl on the day of infusion. TTX (C₁₁H₁₇N₃O₈; Tocris, Bristol, UK) was stored at −40°C in aliquots containing 40 ng/μl in 0.9% saline. On the day of infusion, these aliquots were thawed and diluted with 0.9% saline to obtain a solution with a concentration of 20 ng/μl for intra-hippocampal infusion.

Two-Way Active Avoidance Paradigm

Apparatus

The apparatus consisted of four identical 2-way shuttle boxes (Coulbourn Instruments, model E10-16TC), each set in a ventilated, sound- and light-attenuating shell (model E10-20). The internal dimensions of each chamber were 35 cm × 17 cm × 21.5 cm as measured from the raised grid floor. The box was
divided by an aluminum hurdle (17 cm long, 4 cm high) into
two identical compartments. The hurdle was low enough to
allow the subject to shuttle freely between the two compart-
ments and thin enough to ensure that the rats could not stand
on it to avoid footshocks. The modular shock floor (model
E10-16RF) consisted of 24 stainless steel rods 0.48 cm in
diameter and spaced 1.5 cm apart, center to center. The grid
door was hinged in the middle of the box and thus displace-
ment of the subject from one compartment to the other (i.e., a
shuttle) could be detected by the corresponding pivoting of the
gird floor unit. Scrambled shocks could be delivered from a
constant direct current shock generator (CI, model E13-14)
and scanner (model E13-13) set at 0.5 mA. The chamber was
illuminated during the whole experimental session by two small
light bulbs (1.8 W, houselights), mounted 19 cm above the
grid floor in the middle of the side walls. The CS was an 85-
dB tone produced by a 2.9 kHz tone module (model E12-02)
placed behind the shuttle box on the floor of the isolation
cubicle. Background noise was provided by a ventilation fan
affixed to each isolation cubicle. Data acquisition and stimulus
parameters were controlled by a Compaq PC computer using a
DOS-based software program developed in our laboratory.

Procedures

Two-way active avoidance procedures were based on previous
studies (Weiner et al., 1998; Pouzet et al., 1999). Testing was
carried out over 4 days, with habituation to the test apparatus
don day 1, 2WAA acquisition on day 2, and a session to test
retention of the learned avoidance response on day 4. Individ-
ual rats completed all stages of the experiment in the same
shuttle box.

Habituation to the apparatus. Rats were placed in the shut-
tle box with the house lights on for 60 min and then returned
to their home cage. The number of spontaneous crosses
between the two sides of the shuttle box was recorded during
the habituation session, providing a measure of basal activity.
Rats in the intracerebral infusion study were subsequently
matched for this measure of activity prior to their assignment
to one of the three drug infusion groups.

Acquisition of two way active avoidance. Acquisition train-
ing was carried out one day after the habituation session. In
the infusion experiments, the infusions were conducted before
acquisition training. Each animal was placed into the exper-
imental chamber and received 100 avoidance trials, all of which
(including the first trial) were preceded by a variable inter-trial
interval (ITI), ranging from 10 to 90 s (average 50 s). Each
avoidance trial began with the onset of a 10 s tone CS. If the
animal did not shuttle to the opposite compartment during the
10 s tone (avoidance response), a footshock (unconditioned
stimulus, US) of 0.5 mA was delivered, the tone remaining on
with the shock. The maximal duration of the shock was 2 s. A
shuttle response during this period (escape response) termi-
nated the shock as well as the CS. If the animal did not cross
during the entire 12 s tone-shock trial, the response was
recorded as an escape failure. Shuttle response latency was cal-
culated as a combined avoidance/escape latency throughout the
100-trial test session, such that a value of 0–12 seconds was
assigned to each animal regardless of whether an animal
avoided (0–10 s), escaped (10–12 s), or did not escape the
shock (maximal 12 s).

Test of two way active avoidance retention. Two days after
the initial acquisition training, all of the rats were subjected to
a retention test of 2WAA. The procedure was the same as used
in acquisition training. Avoidance responses and the latencies
were recorded as in the acquisition training. The aim of this
test was to assess the retention of the 2WAA response learnt
two days earlier, as well as the possible long-term effects of the
infusion.

Measures of two way active avoidance and other behavioral
measures. As measures of 2WAA, the number of avoidance
responses and response latencies were recorded in 10 trial
blocks. As a control measure for potential non-specific motor
effects, crossings during the ITI were also recorded in 10 trial
blocks. In addition, the overall number of escape failures across
the 100 trial sessions was recorded.

Experimental Design

Rats were tested in batches of four. The different testing
boxes and the order of testing were counterbalanced among the
experimental groups as far as possible.

Lesion experiment (Experiment 1)

There were four groups: bilateral DH lesion group (n = 10),
bilateral VH lesion group (n = 10), bilateral CH lesion group
(n = 10) and control group, consisting of sham (n = 8) oper-
ated and unoperated (n = 9) rats (overall n = 17). Before com-
bining sham operated and unoperated rats into one control
group, separate analysis confirmed that these two groups did
d not differ in any of the behavioral measures examined (all
F < 0.68).

Infusion experiments (Experiments 2 and 3)

Rats with bilateral implantation of guide cannulae targeting
ventral (n = 17) or dorsal hippocampus (n = 44) were used to
test the effects of ventral (Experiment 2) or DH infusions
(Experiment 3). Infusions were only made before the acquisi-
tion session. Based on matched activity measures during the
habituation session, the cannulated rats were allocated to one
of three infusion groups to receive bilateral infusion of 0.5 μl
saline/side, 10 ng TTX/0.5 μl/side, or 1 μg muscimol/0.5 μl/
side into either the ventral or the dorsal hippocampus. In the
experiment involving VH infusions, group sizes were: saline,
n = 6; TTX, n = 4; muscimol, n = 7. In the experiments
involving DH infusions, group sizes were: saline, n = 14; TTX,
n = 15; muscimol, n = 15.
Histology

After the completion of behavioral testing, all hippocampal lesioned, cannulated, and five randomly selected sham-operated rats were deeply anesthetized with an overdose of 2.5 ml/kg Nembutal (sodium pentobarbital, 50 mg/ml, i.p.) and transcardially perfused with 0.9% NaCl solution, followed by 120 ml of 4% (wt/vol) formaldehyde in saline (4°C) to fix the brain tissue. The brains were extracted from the skull, post-fixed in 4% formaldehyde solution, and subsequently cut into 40-μm coronal sections on a freezing microtome. For the examination of the hippocampal lesions or the injection sites, every fourth section through the hippocampus was mounted onto gelatin-coated slides and stained with cresyl violet. After staining, the sections were dehydrated through an alcohol series, cleared with xylene, and coverslipped with Eukitt (Kindler, Freiburg, Germany). Subsequently, the sections were examined with a light microscope to verify lesions and cannula placements. Lesions were quantified as outlined below and infusion sites were mapped onto plates taken from the atlas by Paxinos and Watson (1998).

Quantification of lesion size

Hippocampal lesion size was measured using a method adapted from Bast et al. (2009). Briefly, for each rat from the lesion and sham groups, the relative volume of intact/spared hippocampal tissue was measured. The intact hippocampus (including CA1, CA3, and dentate gyrus) in each coronal section was outlined using the light microscope connected via a digital camera to a computer running ImageJ software (version 1.7, National Institutes of Health, Maryland). The total hippocampal area was measured in pixels for each brain and the mean hippocampal area in pixels was calculated for each group. The proportion of spared tissue in individual brains from the lesion group was calculated by dividing the spared hippocampal area by the mean hippocampal area in the sham group, and the extent of hippocampal damage of each subject for each group was calculated as 100% minus percentage of spared tissue. From these values, the mean % of hippocampal damage was calculated for each lesion group.

Data Analysis

Statistical analyses were performed with StatView software (Abacus Concepts, Berkeley, CA, 1992). Groups were used as between-subjects factor and blocks of 10 trials as repeated measures. Post hoc comparisons were conducted using Fisher’s protected least significant difference test. Significant differences were accepted at $P < 0.05$. Values are presented as means. In the text, variability is indicated by the standard error of the mean (S.E.M.). In the figures, for the sake of clarity, the standard error (S.E.) derived from the appropriate mean square of the ANOVA indicates variability.

RESULTS

Histology

Experiment 1: Neurotoxic hippocampal lesions

Photomicrographs of coronal sections taken from representative rats with bilateral dorsal, ventral, and CH excitotoxic lesions together with schematic reconstructions of the minimal (solid areas) and maximal (solid and shaded areas) damage are depicted in Figure 1A. Sham lesioned rats showed no discernable damage to the hippocampus or to extra-hippocampal areas, apart from occasional small traces of the needle tracks.

Rats with lesions targeting the dorsal hippocampus showed substantial cell loss and extensive gliosis in the dorsal half to two-thirds of the hippocampus (including the dentate gyrus, CA1 and CA3), while the ventral third was intact. In the most anterior part of the dorsal hippocampus, minor sparing was seen in the medial dentate gyrus and CA1 subfield. The mean amount of damage ±SEM was 58.5 ± 2.4% of total hippocampal volume (range: 49.8–67.2%). In addition to the intended hippocampal damage, there was some damage to the dorsal subiculum and to the cortex overlying the hippocampus. Rats with lesions targeting the ventral hippocampus typically showed extensive cell loss and gliosis in the ventral half to two-thirds of the hippocampus, while the dorsal third remained intact. In some cases, minor damage was seen in the ventral subiculum and the ventral pre- and parasubiculum; however, this damage never extended into the entorhinal cortex. In three of the ventral lesioned rats, only very limited damage could be discerned in the ventral hippocampus (less than 10% of total hippocampal volume), and these three rats were therefore excluded from further analysis. The mean amount of hippocampal damage in the rest of the VH lesion group was 55.8 ± 4.1% of total hippocampal volume (range: 38.0–72.6%).

The CH lesion group was characterized by substantial cell loss and intense gliosis throughout the entire longitudinal extent of the hippocampus. In some cases, minor sparing of the most caudo-medial part of the dorsal hippocampus (dentate gyrus and CA1) was observed, while in other cases sparing of the dentate gyrus granule cells at the most ventral tip of the hippocampus was observed. No signs of damage to the amygdala, or dorsal thalamus were noted. In some cases, some damage to the ventral and dorsal subiculum and the ventral and dorsal pre- and parasubiculum was observed, yet this damage did not extend into the entorhinal cortex. In general, the damage present in the CH lesion group was comparable to the extent and location of the damage seen in the dorsal and VH lesion groups separately. One CH lesioned rat showed very limited damage (less than 10% of total hippocampal volume), and consequently this rat was excluded from further analysis. The mean amount of hippocampal damage in the rest of the CH lesion group was 100 ± 3.6% of the total hippocampal volume (range: 84.4–116.7%). The final number of rats used in the behavioral analysis was 17 controls (9 unoperated, 8 sham-lesioned), 10 DH, 7 VH, and 9 CH.
Experiments 2 and 3: Hippocampal infusion sites

In all 61 cannulated rats, the centers of the infusion sites, i.e. the tips of the infusion cannulae, were located within or around the border of the ventral (n = 17, Experiment 2) or dorsal (n = 44, Experiment 3) hippocampus as intended (Fig. 1B). Tissue damage was found in the hippocampus and the cortex overlying the hippocampus. This damage was restricted to the area immediately surrounding the guide and infusion cannulae.
HIPPOCAMPUS AND TWO-WAY ACTIVE AVOIDANCE CONDITIONING

Experiment 1: DH or VH lesions do not affect two-way active avoidance conditioning, whereas CH lesions tend to improve performance

DH or VH lesions did not alter conditioned 2WAA acquisition, while CH lesions tended to enhance acquisition; this was supported by the analysis of avoidance responses (Fig. 2A, left panel) and of the latencies to avoid or escape the footshock following CS onset (Fig. 2B, left panel). The analysis of percent avoidance response during acquisition test using a 4×10 (group \times blocks of 10 trials) ANOVA only yielded a significant main effect of blocks ($F_9, 351 = 46.4, P < 0.0001$), indicating an overall increase in avoidance response as a function of training. Neither the main effect of group ($F_3, 39 = 1.36, P > 0.26$) nor the group \times blocks interaction ($F_{27, 351} = 1.36, P > 0.31$) was significant. However, consistent with previous evidence for improved acquisition of 2WAA behavior following substantial damage to the hippocampus or fimbria fornix (see Introduction), rats with CH lesions tended to show more avoidance responses as compared to the other groups during the first half (50 trials) of the acquisition session. Indeed, a separate 4×5 (group \times blocks of 10 trials) ANOVA of the percent avoidance responses during the first 50 trials of the acquisition test yielded a strong trend toward a main effect of group ($F_3, 39 = 2.57, P = 0.06$). Post hoc comparisons revealed that the average percentage of avoidance responses across the first 50 trials was increased in the CH lesion group (58.0 ± 8.6%) as compared to the control (33.5 ± 5.6%, $P < 0.02$) and DH lesion group (33.6 ± 6.8%, $P < 0.03$). There was no significant difference between the complete and the ventral lesion (44.8 ± 8.6%) groups ($P > 0.26$) and between the control, dorsal, and ventral groups (all $P's > 0.28$). Analysis of the response latencies yielded similar results. A 4×10 (group \times blocks of 10-trials) ANOVA of response latencies during acquisition training revealed only a significant main effect of blocks ($F_9, 351 = 42.2, P < 0.0001$), indicating an overall decrease of response latencies as a function of blocks, but neither the main effect of group ($F_3, 39 = 2.02, P > 0.12$) nor the group \times blocks interaction ($F_{27, 351} = 1.06, P > 0.38$) attained significance. However, rats with CH lesions exhibited shorter response latencies than the three other groups during the first 50 trials of acquisition training. A separate 4×5 (group \times blocks of 10-trials) ANOVA of the crossing response latency during the first 50 trials revealed a significant main effect of group ($F_3, 39 = 3.31, P < 0.03$), along with a highly significant main effect of blocks ($F_4, 156 = 61.4, P < 0.0001$) with no interaction group \times block ($F_{12, 156} = 1.23, P > 0.26$). Post hoc comparisons revealed that the average response latencies of the CH lesion group (6.2 ± 0.8 s) across the first 50 trials were significantly shorter than those of the control (8.5 ± 0.4 s, $P < 0.01$) and DH lesion group (8.6 ± 0.6 s, $P < 0.01$). There were no significant differences between complete and ventral lesion (7.6 ± 0.7 s) group ($P > 0.15$) and between control, dorsal, and ventral group (all $P's > 0.32$).

Two days after acquisition training, all groups showed similar 2WAA behavior during the retention test in terms of avoidance responses (Fig. 2A, right panel). However, the control group tended to show slightly higher response latencies, especially as compared to the CH lesion group, during the beginning of the retention session (Fig. 2B, right panel). A 4×10 (group \times blocks of 10 trials) ANOVA of avoidance responses yielded only a significant main effect of blocks ($F_9, 351 = 20.3, P < 0.0001$), reflecting an improvement in 2WAA responding during the first 20–30 trials. Neither the main effect of group ($F_3, 39 = 1.03, P > 0.39$) nor the group \times blocks interaction ($F_{27, 351} = 1.05, P > 0.39$) was significant. A 4×10 (group \times blocks of 10 trials) ANOVA of response latencies during retention test yielded a significant main effect of blocks ($F_9, 351 = 11.8, P < 0.0001$), no main effect of group ($F_3, 39 = 0.58, P > 0.6$), but a strong trend toward an interaction of group \times blocks ($F_{27, 351} = 1.46, P = 0.069$). This trend reflected lower latencies in the lesion groups, especially in the CH lesion group, as compared to the control group during the first 20 trials, before asymptotic values were
reached by all groups. The latency data indicate that the CH lesion group carried over some of the facilitated 2WAA performance from the acquisition to the retention test session.

Experiment 2: Tetrodotoxin or muscimol infusion into the ventral hippocampus disrupt the acquisition of two-way active avoidance behavior

TTX and muscimol infusion into the ventral hippocampus markedly disrupted acquisition of 2WAA behavior, with avoidance responses remaining at a very low level (Fig. 3A, left panel) and response latencies remaining high (Fig. 3B, left panel) throughout the whole acquisition session. A 3 × 10 (group × blocks of 10 trials) ANOVA of the percent avoidance response during acquisition test yielded highly significant main effects of group ($F_2, 14 = 14.23, P < 0.0005$) and of blocks ($F_9, 126 = 10.65, P < 0.0001$) and a highly significant interaction of group × blocks ($F_{18, 126} = 6.03, P < 0.0001$). The significant interaction group × blocks of 10 trials reflected that the number of avoidance responses in the saline group increased as training progressed, whereas the TTX and muscimol rats showed very low levels of avoidance responses throughout the acquisition session. Analysis of response latencies produced similar results. An overall 3 × 10 (groups × blocks of 10-trials) ANOVA of response latencies during acquisition training showed a significant main effect of group ($F_2, 14 = 9.70, P < 0.003$) and of blocks ($F_9, 126 = 9.14, P < 0.0001$), as well as a significant group × blocks interaction ($F_{18, 126} = 6.68, P < 0.0001$). The significant interaction of group × blocks of 10-trials reflected that response latencies in the saline group decreased as a function of acquisition training, whereas latencies remained high in the TTX and muscimol groups.

Two days after acquisition training, the retention test was carried out without infusion (Figs. 3A,B, right panels). Rats that had received TTX or muscimol into the ventral hippocampus before acquisition training still showed evidence for slightly impaired 2WAA behavior, probably reflecting that, in contrast to the saline group, they benefited only little from the preceding acquisition training. However, all three groups showed a similar increase in avoidance response as the session progressed, suggesting that the impairment in 2WAA acquisition induced by TTX or muscimol infusion was temporary and reversible. A 3 × 10 (group × blocks of 10 trials) ANOVA of percent avoidance response during retention test revealed a strong trend toward a main effect of group ($F_2, 14 = 3.5, P = 0.059$) and a main effect of blocks ($F_9, 126 = 23.28, P < 0.0001$), but no interaction group × block ($F_{18, 126} = 1.53, P = 0.92$). Pairwise comparisons between groups revealed that the overall percentage of avoidance responses during the retention test was higher in the saline group (88.83 ± 4.0%) than in the muscimol (65.71 ± 4.9%, $P < 0.03$) and TTX (69.00 ± 15.27%, $P = 0.08$) groups, which did not differ from each other ($P = 0.75$). Analysis of response latencies using a 3 × 10 (groups × blocks of 10 trials) ANOVA only yielded a main effect of blocks ($F_9, 126 = 14.75, P < 0.0001$), without a main effect of groups ($F_2, 14 = 2.15, P > 0.15$) or an interaction of groups × blocks ($F_{18, 126} = 1.21, P > 0.26$), even though numerically latencies were higher in the muscimol and TTX groups compared to the saline group.

Experiment 3: Tetrodotoxin or muscimol infusion into the dorsal hippocampus cause a delayed disruption in the acquisition of two-way active avoidance behavior

TTX and muscimol infusions into the dorsal hippocampus disrupted 2WAA performance during the acquisition session, as...
indicated by reduced avoidance responses (Fig. 4A, left panel) and increased response latencies (Fig. 4B, right panel). Interestingly, the deficit only emerged during the last 40–50 trials of acquisition training, when rats that had received TTX or muscimol infusions stopped to show any further improvements in 2WAA performance and even showed a slight reduction in performance levels. A 3 × 10 (group × blocks of 10 trials) ANOVA of the percent avoidance response during acquisition training revealed a strong trend toward a main effect of group (F2, 41 = 2.95, P = 0.06), a main effect of blocks (F9, 369 = 30.68, P < 0.0001), as well as a highly significant group × blocks interaction (F18, 369 = 4.12, P < 0.0001). The significant interaction of group × block of 10-trials reflected that the reduction of avoidance responses in the TTX and muscimol groups as compared to the saline group emerged during the second half of acquisition training. Similarly, a 3 × 10 (groups × blocks of 10-trials) ANOVA of response latencies during acquisition training yielded a significant main effect of group (F2, 41 = 4.0, P < 0.03), a highly significant main effect of blocks (F9, 369 = 28.2, P < 0.0001) and a significant groups × blocks interaction (F18, 369 = 5.73, P < 0.0001). The significant interaction of groups × blocks of 10-trials reflected that the increase of response latencies in the TTX and muscimol groups in comparison to the saline group emerged during the second half of acquisition training.

Two days after acquisition training, when tested in the absence of infusion, the TTX and muscimol groups still showed impaired 2WAA behavior as compared to the saline group during the first half of the retention session, but had acquired similar performance levels by the beginning of the second half (Fig. 4A, right panel). A 3 × 10 (group × blocks of 10 trials) ANOVA of percent avoidance responses yielded a significant main effect of blocks (F9, 369 = 38.6, P < 0.0001) and a significant groups × blocks interaction (F18, 369 = 3.10, P < 0.01), but no main effect of group (F2, 41 = 1.47, P > 0.24). The interaction of groups × blocks reflected that the saline group reached asymptotic levels of active avoidance responses within the first block of 10 trials, whereas the TTX and muscimol groups only showed such high levels of avoidance responses during the second half of the session. Analysis of response latencies yielded similar results. A 3 × 10 (groups × blocks of 10 trials) ANOVA of response latencies during the retention test yielded a significant main effect of blocks (F9, 369 = 27.5, P < 0.0001) and a significant groups × blocks interaction (F18, 369 = 3.12, P < 0.0001), but no main effect of groups (F2, 41 = 1.72, P > 0.19). The significant groups × blocks interaction reflected that the saline rats reached asymptotically low levels of response latencies within the first block of 10 trials, whereas the TTX and muscimol rats showed similarly low latencies only during the second half of the retention test.

Experiments 1–3: Changes in ITI crossings or escape failures cannot account for the effects of hippocampal lesions or inactivation on measures of two way active avoidance learning

Changes in ITI crossings are often used to assess changes in motor activity that may account for improved or impaired 2WAA learning (Vinader-Caerols et al., 1996; Guillazo-Blanch et al., 2002; Shumake et al., 2010; Boschen et al., 2011; Darvas et al., 2011; Ramirez et al., 2015). The pattern of ITI crossings during acquisition and retention session of Experiments 1–3 (Fig. 5, left) does not support that group differences in motor activity, as reflected by ITI crossings, can account for the group differences in 2WAA learning (Figs. 2–4). In Experiment 1, ITI crossings during acquisition did not clearly differ between lesion groups (main effect of group: F3, 39 = 1.74, P = 0.17; interaction group × block of 10 trials: F27, 351 < 1); during retention, there was an interaction between group and block of 10 trials (F27, 351 = 1.69, P = 0.019),
mainly reflecting that complete and VH lesion groups showed less ITI crossings, as compared to the other groups, during blocks 3–5. While these differences are not easy to explain and might reflect a chance finding, any differences in ITI crossings during retention can clearly not account for the differences in 2WAA learning observed during acquisition. In addition, during the 60-min habituation to the shuttle boxes, which was conducted after lesion surgery and one day before the acquisition session, all lesion groups showed a similar number of crossings across the habituation session (mean ± SEM: Cont, 41.4 ± 4.8; VH lesion, 44.1 ± 5.9; DH lesion, 32.1 ± 4.2; CH lesion, 47.3 ± 9.3) \((F_3, 39 = 1.01, P > 0.39) \). An analysis

FIGURE 5. Experiment 1–3: ITI crossings and escape failures. ITI crossings (left) and escape failures (right) during acquisition and retention in Experiment 1 (hippocampal lesions before acquisition: Cont, control group; VH, ventral hippocampal lesion; DH, dorsal hippocampal lesion; CH, complete hippocampal lesions), Experiment 2 (ventral hippocampal muscimol, MUS, or TTX infusion before acquisition) and Experiment 3 (dorsal hippocampal muscimol, MUS, or TTX infusion before acquisition). ITI crossing are presented as the averages of 10 trial blocks, with values showing means and error bars representing 1 standard error (S.E.) derived from ANOVA. Escape failures are presented as total number throughout the complete 100 trial acquisition or retention sessions, with values showing mean ± SEM.
The main new finding of the present study is that temporary inhibition of hippocampal activity, using muscimol or TTX infusions into the dorsal or ventral hippocampus, disrupted 2WAA learning. Muscimol or TTX infusions into the ventral hippocampus caused an immediate deficit in 2WAA performance, whereas following dorsal infusions rats performed similar to the control group for 40–50 min before a performance deficit emerged during the second half of the 2WAA acquisition session. In contrast to the impairments observed following temporary functional inhibition of the hippocampus by muscimol or TTX, NMDA-induced neurotoxic lesions to the complete hippocampus tended to facilitate, while neuronal lesions restricted to the dorsal or ventral hippocampus did not affect 2WAA learning.

Effects of Permanent Hippocampal Lesions

Many previous studies have reported enhanced 2WAA learning following non-fiber sparing hippocampal lesions or fornix transections (Olton and Isaacson, 1968; O’Keefe and Nadel, 1978; Gray and McNaughton, 1983; Tonkiss et al., 1990; Weiner et al., 1998; Pouzet et al., 1999; Guillazo-Blanch et al., 2002). In the present study, we found a similar, albeit weaker, effect following neurotoxic lesions to the complete hippocampus. This new finding supports that permanent damage to hippocampal neurons, rather than to fibers of passage, leads to the facilitation of 2WAA learning.

One interpretation of improved 2WAA learning following hippocampal lesions is that some aspects of hippocampal processing hinder 2WAA learning. As outlined in the Introduction, hippocampus-dependent one-trial place or context fear conditioning, inhibiting escape responses to a part of the chamber where the rat received a footshock on the previous trial, might hinder 2WAA learning. Another important hippocampus-dependent behavioral function that may hinder 2WAA is freezing. Freezing, a crouching immobile posture, is a passive defensive response to aversive stimuli—such as to the conditioning chamber (context) where shock is received or to the tone signaling footshock—and has been shown to constrain active avoidance responses (Blanchard and Blanchard, 1969), including 2WAA (Choi et al., 2010; Ramirez et al., 2015). We did not measure freezing in our 2WAA experiments. Our informal observations suggest that individual rats showed different behavioral patterns when they were not avoiding: some rats mainly showed freezing, whereas others alternated between walking and freezing; we did not assess differences in these behavioral patterns between groups. However, conditioned freezing has often been used as the main dependent measure in studies examining the effects of hippocampal lesions on classical fear conditioning. Such studies have shown that hippocampal lesions can reduce the formation and/or expression of freezing responses to a context or tone paired with shock (Richmond et al., 1999; Anagnostaras et al., 2001; Bast et al., 2001a; Wiltgen et al., 2006). Therefore, it is possible that a reduction in freezing contributed to the facilitation of 2WAA by hippocampal lesions in the present study. In addition, upregulation of nucleus accumbens dopamine transmission as a consequence of permanent hippocampal lesions (Lipska et al., 1992; Mittleman et al., 1993; Wilkinson et al., 1993) may contribute to the facilitation of 2WAA learning, given that meso-accumbens dopamine transmission plays an important facilitating role in 2WAA learning (Wadenberg and Hicks, 1999; Shumake et al., 2010; Boschen et al., 2011; Darvas et al., 2011; Dombrowski et al., 2013). The upregulation of dopamine transmission following hippocampal lesion may also cause locomotor hyperactivity, which is often observed in

DISCUSSION

The main new finding of the present study is that temporary inhibition of hippocampal activity, using muscimol or TTX infusions into the dorsal or ventral hippocampus, disrupted 2WAA learning. Muscimol or TTX infusions into the ventral hippocampus caused an immediate deficit in 2WAA performance, whereas following dorsal infusions rats performed similar to the control group for 40–50 min before a performance deficit emerged during the second half of the 2WAA acquisition session. In contrast to the impairments observed following temporary functional inhibition of the hippocampus by muscimol
open-field testing of rats with hippocampal lesions (Gray and McNaughton, 1983; Bast and Feldon, 2003). However, in the present study, hippocampal lesions did not cause any clear effects on ITI crossings, a measure of motor activity during 2WAA testing. Changes in ITI crossings are more relevant to the interpretation of 2WAA experiments than changes in open-field locomotor activity. This is because changes in ITI crossings indicate non-specific changes in the tendency to cross between the two compartments of the conditioning chamber that could affect 2WAA learning (by affecting the chance to experience the contingency between crossing and shock termination) or be interpreted as an avoidance response. Therefore, the ITI crossing data argue against non-specific motor effects as an explanation for the improved 2WAA learning following hippocampal lesions, consistent with previous studies (Olton and Isaacson, 1968; Gray and McNaughton, 1983). Overall, the tendency of cytotoxic lesions of the complete hippocampus to facilitate 2WAA conditioning may reflect the disruption of rapid place or context conditioning, the disruption of freezing responses, the upregulation of accumbens dopamine transmission, or a combination of these mechanisms.

Effects of Hippocampal Muscimol and TTX Infusion: Ventral, but Not Dorsal, Hippocampus Contributes to Two-Way Active Avoidance Learning

In contrast to permanent hippocampal lesions, temporary functional inhibition of the hippocampus, using muscimol or TTX infusions into the ventral or dorsal hippocampus, markedly impaired 2WAA learning. The GABA-A agonist muscimol selectively inhibits the functions of neurons, whereas the sodium-channel blocker TTX also affects fibers of passage. In the present study, muscimol and TTX caused similar behavioral effects, suggesting that these effects mainly reflect the functional inhibition of hippocampal neurons, not inactivation of fibers of passage. Two-way active avoidance learning was markedly impaired throughout the complete acquisition session following ventral infusions, whereas following dorsal infusions an impairment only emerged during the second half of the acquisition session (i.e., from 40 to 50 min after infusion). This suggests that functional inactivation of more ventral portions of the hippocampus, but not of the dorsal hippocampus, impairs 2WAA learning. The delayed impairment following dorsal drug infusions may reflect the time required for drug spread from the dorsal infusion site to more ventral parts of the hippocampus. Recent experiments combining muscimol infusion (0.5 μg/1 ul) with neuronal recordings in the dorsal hippocampus suggest that the extent of muscimol-induced functional inhibition of hippocampal neurons can spread by 0.5 mm in the horizontal direction within the first 6 min after infusion (Barry et al., 2012). Muscimol concentrations will fall below an effective concentration at further distance from the infusion site and it is difficult to accurately estimate the functional spread of the muscimol infusion (1 μg/0.5 ul) in our study. Nevertheless, it is plausible that during the first half (i.e., 40–50 min) of the acquisition session, functional inhibition by muscimol might have spread from the dorsal infusion site to at least intermediate regions of the hippocampus, which are about 1–2 mm away from the dorsal infusion site. Drug spread outside of the hippocampus is unlikely given that the dense fiber bundles surrounding the hippocampal surface may largely prevent extra-hippocampal drug spread (Morris et al., 1989). The observation that, in Experiment 3, rats infused with muscimol and TTX did not only stop to improve their 2WAA performance during the second half of the acquisition session, but also showed some deterioration in performance levels, may reflect that spread of muscimol and TTX to more ventral regions of the hippocampus did not only impair additional 2WAA learning, but may also have interfered with the expression/retrieval of already acquired 2WAA memory. In any event, our finding that muscimol and TTX infusions into the ventral hippocampus impaired 2WAA learning from the onset of the acquisition session (when neural effects of the drugs would have been restricted to the vicinity of the infusion site), whereas following dorsal infusions an impairment did not emerge before 40–50 min into the session, suggest that activity of more ventral regions of the hippocampus, but not the dorsal hippocampus, is required for 2WAA learning. Interestingly, in line with a preferential involvement of the ventral hippocampus in 2WAA learning suggested by our findings, a previous study showed that electrical kindling of the ventral, but not dorsal, hippocampus impaired 2WAA learning (Becker et al., 1997).

Contributions of the Ventral Hippocampus to Two-Way Active Avoidance Learning

Why does functional inhibition of ventral to intermediate regions of the hippocampus impair 2WAA learning? Even though ventral hippocampal muscimol and TTX infusions reduce open field locomotor activity (Bast et al., 2001b), our analysis of ITI crossings indicated that non-specific changes in motor activity could not account for the impairment of 2WAA learning following these manipulations. Instead, functional inhibition of the ventral hippocampus may disrupt specific neural processes underpinning 2WAA learning.

First, the ventral hippocampus has been implicated in classical fear conditioning to a tone CS (Bannerman et al., 2004; Fanselow and Dong, 2010), and the two-process view of 2WAA suggests that such tone fear conditioning is necessary for learning 2WAA, because fear of the tone is necessary to motivate the avoidance response (Choi et al., 2010). We have previously shown that ventral hippocampal TTX infusion impaired the formation of classical fear conditioning to a tone (Bast et al., 2001b). Even though in our own studies VH muscimol (similar to DH muscimol) only impaired contextual fear conditioning (i.e., conditioning of fear to the conditioning chamber where a footshock was received) (Bast et al., 2001b; Zhang et al., 2014), others reported that VH muscimol can also disrupt fear conditioning to a tone (Maren and Holt, 2004; Esclassan et al., 2009) (reasons for the discrepant
findings of VH muscimol on tone fear conditioning are not clear, see discussion by Zhang et al., 2014). In these studies, freezing was used as a measure of conditioned fear, with VH TTX or muscimol reducing the formation of conditioned freezing to a context or a tone paired with a footshock. Even though a reduction in freezing may normally facilitate 2WAA behavior (see discussion above in relation to the effects of hippocampal lesions), the two-process view of 2WAA conditioning suggests that disrupting the neural mechanisms underlying tone fear conditioning, which would reduce freezing to the tone, should also reduce active avoidance responses to the tone. Therefore, the impairment of 2WAA learning by VH TTX or muscimol may partly reflect that VH processing contributes to classical tone fear conditioning. Similarly, the lateral and basal nuclei of the amygdala have been implicated in both conditioned freezing and active avoidance responses to a tone paired with a footshock, and this was suggested to reflect that these amygdala nuclei play a key role in classical tone fear conditioning (Choi et al., 2010; Ramirez et al., 2015). The lateral and basal nuclei of the amygdala feature strong reciprocal anatomical links to the ventral hippocampus (Pitkanen et al., 2000), providing the neuroanatomical substrate for reciprocal interactions between these brain regions in the processing of tone-shock associations underlying freezing and active avoidance responses. Anagnostaras et al. (2001) suggested that loss of VH inputs to the amygdala may disrupt amygdala function, which would imply that some of the functional sequel of VH inactivation might reflect amygdala dysfunction (even though it remains to be shown if VH inactivation leads to functional changes in the amygdala). However, in vivo electrophysiological studies demonstrated that, during tone fear conditioning, not only amygdala, but also hippocampal neurons develop conditioned responses to the tone (see Moita et al., 2003), supporting that both amygdala and hippocampus genuinely participate in the processing of tone-shock associations.

Second, the ventral to intermediate hippocampus exerts a positive control over the dopamine projections from the ventral tegmental area to the forebrain, including to the nucleus accumbens (Bast, 2007, 2011; Grace et al., 2007; Taepavarapruk et al., 2008). It has also been directly demonstrated that TTX infusion into the ventral subiculum prevents activation of nucleus accumbens dopamine transmission by novelty (Legault and Wise, 2001). There is strong evidence that activation of the meso-accumbens dopamine system supports 2WAA learning (Wadenberg and Hicks, 1999; Smith et al., 2007; Boschen et al., 2011; Darvas et al., 2011; Ilango et al., 2012; Domrowski et al., 2013). Therefore, VH activity may also support 2WAA learning by contributing to the activation of meso-accumbens dopamine transmission.

Why May Permanent Lesions Fail to Reveal the Contributions of the Ventral Hippocampus to Two-Way Active Avoidance Learning?

One important consideration is that the ventral hippocampus may not make unique contributions to 2WAA learning. That is to say, the VH contributions to classical tone fear conditioning and to the activation of the meso-accumbens dopamine system overlap with the contributions of other brain regions. For example, the lateral and basal nuclei of the amygdala are also important (and probably more important than the ventral hippocampus) for the association of a tone and a footshock (Fanselow and LeDoux, 1999; Maren and Quirk, 2004) and several regions, including the basal and lateral amygdala and the prefrontal cortex, can activate the meso-accumbens dopamine pathway (Sesack and Grace, 2010). Therefore, the loss of hippocampal contributions may be compensated for by the contributions of other brain regions. Such compensation may particularly be possible following a complete and permanent loss of hippocampal activity, as resulting from permanent lesions. In contrast, residual, but severely disrupted, hippocampal activity, as can be expected following TTX or muscimol infusions, may less allow for compensation by other brain regions, because of residual, albeit faulty, hippocampal output (also compare Lomber, 1999). In addition, as already discussed above, permanent hippocampal lesions have been demonstrated to lead to an upregulation of accumbal dopamine transmission (Lipska et al., 1992; Mittleman et al., 1993; Wilkinson et al., 1993), a secondary lesion effect that may even overcompensate for the loss of positive modulation of dopamine transmission by the ventral to intermediate hippocampus.

CONCLUSIONS

Using temporary functional inhibition by muscimol or TTX, the present study reveals that the ventral hippocampus contributes to 2WAA learning. These contributions may reflect the participation of the ventral hippocampus (1) in classical fear conditioning to the tone CS and (2) in the activation of the meso-accumbens dopamine system, both of which processes that have been strongly implicated in 2WAA learning. The contributions of the ventral hippocampus to these two processes are not unique, but overlap with those by other brain regions. Two main reasons may explain why hippocampal lesions do not reveal these contributions. First, if hippocampal activity is permanently and completely lost, other brain regions may compensate for the loss of hippocampal function in 2WAA learning, whereas the temporarily limited and incomplete reduction of hippocampal function resulting from TTX and muscimol infusion may not equally allow for such compensation. Second, permanent hippocampal lesions cause an upregulation of meso-accumbens dopamine transmission, which may facilitate 2WAA learning.

Acknowledgments

The authors thank Joram Feldon for his support of this work, Liz Weber and Helen H.J. Potthuizen for their help with histology, and Peter Schmid for the set-up and maintenance of the computerized systems for behavioral analysis.

Hippocampus
REFERENCES

Richmond MA, Yee BK, Pouzet B, Veenman L, Rawlins JNP, Feldon J, Bannerman DM. 1999. Dissociating context and space within...
the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behav Neurosci 113:1189–1203.

