Analysing design problem solving products as external representations

Erica de Vries
Laboratory for Educational Sciences, UPMP-JUFM
University of Grenoble II, France

External representations in design

- Definitions of representation
 - Something that stands for something else (to somebody)
 - Making present something absent

- Design = the construction of the plan of an object that will satisfy some need
 - Involves multiple external representations
 - Text, drawings, diagrams, measurements, computer graphics
 - In domain-specific formats
 - Lists, technical drawings, flowcharts,

A view on learning and design

- Opposite processes with respect to three domains?
 - The mental, the symbolic and the material domain

 - Need for semiotics
 - The study of cultural conventions in meaning making
 - A representation is meaning making in the same semiotic system (Cox, 2007)
 - System or not for objective reasons (if stop means go) but code a matter of no versus green

Palmer’s features (1978) applied to design

<table>
<thead>
<tr>
<th>Represented world</th>
<th>Aspects represented</th>
<th>Representing world</th>
<th>Aspects representing</th>
<th>Correspondence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial relations</td>
<td>Geometry</td>
<td>Lines, line width and style, angles, data, shades, gradients, forms, profiles, relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material characteristics</td>
<td>Graphical code</td>
<td>shaded, shaded, smooth, gradients, forms, profiles, relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated artifacts</td>
<td>Functional aspects</td>
<td>Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description, illustrations</td>
<td>Discourse, Word, phrase, Semantics</td>
<td>Visual resemblance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A preliminary inquiry

- Into the representational formats used by different types of students in solving a design problem
 - How do they express geometrical and functional information?
 - To what extent do they vary between and within groups?

- Corpus
 - Drawings and textual comments produced by students from different backgrounds for a student residence problem
 - 16 fourth year university students in educational science
 - 37 secondary school students in vocational training

Student-residence problem (Bookholdt, 1984)

- Design at least three different layouts, describe them and give order of preference with argumentation
 - On white or squared paper
 - A 3-dimensional projection drawing showed the form and dimensions of the room and the available furniture
 - Dimensions were chosen so that common or obvious floor plans were problematic from a user's point of view
 - Bed below the window
 - Furniture blocking door or window
 - Impossible to open the cupboard
 - Too little space for sitting at desk

"Rational" layouts

- Schematic drawings
 - Not pictorial
 - No reference of size
- Geometrical characteristics
 - 2D scale drawings
- Functional characteristics
 - Footprint showing constraints and space and foot press
 - Access to door and window
 - Heating and light on desk
 - Room to move around
 - Not neglecting silence
 - Space for sitting at desk
 - Space for opening window
 - Cleaning maintenance
 - Smiling friends
4th year students in education

- Resemble the rational layout
- Schematic drawings
- Geometrical information
 - 100% 2D drawings
 - 50% scale drawings
 - 100% physically possible
- Functional information
 - In simple tests
 - Mention 2 to 7 different functions (mean = 3.5)
 - 38% showed user problems
 - 11% of non-scale drawings

<table>
<thead>
<tr>
<th>Function</th>
<th>Mentioned by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>100%</td>
</tr>
<tr>
<td>Work</td>
<td>94%</td>
</tr>
<tr>
<td>Move around</td>
<td>88%</td>
</tr>
<tr>
<td>Store</td>
<td>56%</td>
</tr>
<tr>
<td>Rest</td>
<td>38%</td>
</tr>
<tr>
<td>Pleasant stay</td>
<td>19%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>13%</td>
</tr>
<tr>
<td>Invite friends</td>
<td>13%</td>
</tr>
</tbody>
</table>

Secondary school students in vocational training

- Large variety of productions
 - Schematic, technical and pictorial
- Geometrical information
 - 35% 2D, 35% 3D, and 35% mixed
 - 28% scale drawings
 - 75% physically possible
- Functional information
 - Not much test
 - Schematic, technical, and pictorial 2D and 3D
 - Mention 2 to 7 different functions (mean = 3.5)
 - 38% showed user problems
 - 11% of non-scale drawings

<table>
<thead>
<tr>
<th>Function</th>
<th>Mentioned by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>24%</td>
</tr>
<tr>
<td>Work</td>
<td>32%</td>
</tr>
<tr>
<td>Move around</td>
<td>38%</td>
</tr>
<tr>
<td>Store</td>
<td>16%</td>
</tr>
<tr>
<td>Rest</td>
<td>19%</td>
</tr>
<tr>
<td>Pleasant stay</td>
<td>22%</td>
</tr>
<tr>
<td>Maintenance</td>
<td>3%</td>
</tr>
<tr>
<td>Invite friends</td>
<td>8%</td>
</tr>
</tbody>
</table>
A conclusion & further research

- Complex relations between chosen representational format and physical and functional soundness
 - For the university students
 - The most preferred representation is 3D schematic drawings, but this does not prevent user problems. Functional problems seem to be more likely to arise in scale drawings.
 - For the secondary school students
 - Several representational strategies exist; 2D scale drawings seem to be more likely to show physical and functional problems.
- Emerging research questions
 - What influences choice of a representational format?
 - What explains the situation and problem statement?
 - What explains individual differences?
 - Vicariness, e.g., interchangeability of cognitive processes for determining actions in a given situation.